| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version | ||
| Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
| 2 | excom 2163 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 3 | 1, 2 | xchbinx 334 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
| 4 | alnex 1781 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 5 | 3, 4 | bitr4i 278 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
| 6 | noel 4301 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 8 | 7 | albii 1819 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 9 | noel 4301 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 10 | 9 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 11 | 10 | albii 1819 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 12 | 5, 8, 11 | 3bitr3i 301 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 13 | eqabcb 2869 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
| 14 | eqabcb 2869 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 16 | df-dm 5648 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 17 | 16 | eqeq1i 2734 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
| 18 | dfrn2 5852 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 19 | 18 | eqeq1i 2734 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 20 | 15, 17, 19 | 3bitr4i 303 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∅c0 4296 class class class wbr 5107 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: rn0 5889 relrn0 5936 imadisj 6051 rnsnn0 6181 rnmpt0f 6216 f00 6742 f0rn0 6745 2nd0 7975 iinon 8309 onoviun 8312 onnseq 8313 map0b 8856 fodomfib 9280 fodomfibOLD 9282 intrnfi 9367 wdomtr 9528 noinfep 9613 wemapwe 9650 fin23lem31 10296 fin23lem40 10304 isf34lem7 10332 isf34lem6 10333 ttukeylem6 10467 fodomb 10479 rpnnen1lem4 12939 rpnnen1lem5 12940 fseqsupcl 13942 fseqsupubi 13943 dmtrclfv 14984 ruclem11 16208 prmreclem6 16892 0ram 16991 0ram2 16992 0ramcl 16994 gsumval2 18613 ghmrn 19161 gexex 19783 gsumval3 19837 subdrgint 20712 iinopn 22789 hauscmplem 23293 fbasrn 23771 alexsublem 23931 evth 24858 minveclem1 25324 minveclem3b 25328 ovollb2 25390 ovolunlem1a 25397 ovolunlem1 25398 ovoliunlem1 25403 ovoliun2 25407 ioombl1lem4 25462 uniioombllem1 25482 uniioombllem2 25484 uniioombllem6 25489 mbfsup 25565 mbfinf 25566 mbflimsup 25567 itg1climres 25615 itg2monolem1 25651 itg2mono 25654 itg2i1fseq2 25657 itg2cnlem1 25662 minvecolem1 30803 rge0scvg 33939 esumpcvgval 34068 cvmsss2 35261 fin2so 37601 ptrecube 37614 heicant 37649 isbnd3 37778 totbndbnd 37783 rnnonrel 43580 stoweidlem35 46033 hoicvr 46546 |
| Copyright terms: Public domain | W3C validator |