| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version | ||
| Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by TM, 24-Jan-2026.) |
| Ref | Expression |
|---|---|
| dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5098 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 2 | breq2 5099 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑧𝐴𝑦 ↔ 𝑧𝐴𝑤)) | |
| 3 | 1, 2 | excomw 2047 | . . . . . . 7 ⊢ (∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ∃𝑦∃𝑧 𝑧𝐴𝑦) |
| 4 | breq2 5099 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) | |
| 5 | 1, 4 | sylan9bbr 510 | . . . . . . . 8 ⊢ ((𝑦 = 𝑤 ∧ 𝑧 = 𝑥) → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑤)) |
| 6 | 5 | cbvex2vw 2042 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 𝑧𝐴𝑦 ↔ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 7 | 3, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 8 | 7 | notbii 320 | . . . . 5 ⊢ (¬ ∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 9 | alnex 1782 | . . . . 5 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑧∃𝑦 𝑧𝐴𝑦) | |
| 10 | alnex 1782 | . . . . 5 ⊢ (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ¬ ∃𝑤∃𝑥 𝑥𝐴𝑤) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . . . 4 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤) |
| 12 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑧 ∈ ∅ | |
| 13 | 12 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑧𝐴𝑦 ↔ (∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 14 | 13 | albii 1820 | . . . 4 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 15 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑤 ∈ ∅ | |
| 16 | 15 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑤 ↔ (∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 17 | 16 | albii 1820 | . . . 4 ⊢ (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 18 | 11, 14, 17 | 3bitr3i 301 | . . 3 ⊢ (∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅) ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 19 | breq1 5098 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑦 ↔ 𝑧𝐴𝑦)) | |
| 20 | 19 | exbidv 1922 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦 𝑧𝐴𝑦)) |
| 21 | 20 | eqabcbw 2807 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 22 | 4 | exbidv 1922 | . . . 4 ⊢ (𝑦 = 𝑤 → (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥 𝑥𝐴𝑤)) |
| 23 | 22 | eqabcbw 2807 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 24 | 18, 21, 23 | 3bitr4i 303 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 25 | df-dm 5631 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 26 | 25 | eqeq1i 2738 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
| 27 | dfrn2 5834 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 28 | 27 | eqeq1i 2738 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 29 | 24, 26, 28 | 3bitr4i 303 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∅c0 4282 class class class wbr 5095 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: rn0 5872 relrn0 5918 imadisj 6035 rnsnn0 6162 rnmpt0f 6197 f00 6712 f0rn0 6715 2nd0 7936 iinon 8268 onoviun 8271 onnseq 8272 map0b 8815 fodomfib 9222 fodomfibOLD 9224 intrnfi 9309 wdomtr 9470 noinfep 9559 wemapwe 9596 fin23lem31 10243 fin23lem40 10251 isf34lem7 10279 isf34lem6 10280 ttukeylem6 10414 fodomb 10426 rpnnen1lem4 12882 rpnnen1lem5 12883 fseqsupcl 13888 fseqsupubi 13889 dmtrclfv 14929 ruclem11 16153 prmreclem6 16837 0ram 16936 0ram2 16937 0ramcl 16939 gsumval2 18598 ghmrn 19145 gexex 19769 gsumval3 19823 subdrgint 20722 iinopn 22820 hauscmplem 23324 fbasrn 23802 alexsublem 23962 evth 24888 minveclem1 25354 minveclem3b 25358 ovollb2 25420 ovolunlem1a 25427 ovolunlem1 25428 ovoliunlem1 25433 ovoliun2 25437 ioombl1lem4 25492 uniioombllem1 25512 uniioombllem2 25514 uniioombllem6 25519 mbfsup 25595 mbfinf 25596 mbflimsup 25597 itg1climres 25645 itg2monolem1 25681 itg2mono 25684 itg2i1fseq2 25687 itg2cnlem1 25692 minvecolem1 30858 rge0scvg 33985 esumpcvgval 34114 cvmsss2 35341 fin2so 37670 ptrecube 37683 heicant 37718 isbnd3 37847 totbndbnd 37852 rnnonrel 43711 stoweidlem35 46160 hoicvr 46673 |
| Copyright terms: Public domain | W3C validator |