MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dm0rn0 Structured version   Visualization version   GIF version

Theorem dm0rn0 5870
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by TM, 24-Jan-2026.)
Assertion
Ref Expression
dm0rn0 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)

Proof of Theorem dm0rn0
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝐴𝑦𝑥𝐴𝑦))
2 breq2 5099 . . . . . . . 8 (𝑦 = 𝑤 → (𝑧𝐴𝑦𝑧𝐴𝑤))
31, 2excomw 2047 . . . . . . 7 (∃𝑧𝑦 𝑧𝐴𝑦 ↔ ∃𝑦𝑧 𝑧𝐴𝑦)
4 breq2 5099 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥𝐴𝑦𝑥𝐴𝑤))
51, 4sylan9bbr 510 . . . . . . . 8 ((𝑦 = 𝑤𝑧 = 𝑥) → (𝑧𝐴𝑦𝑥𝐴𝑤))
65cbvex2vw 2042 . . . . . . 7 (∃𝑦𝑧 𝑧𝐴𝑦 ↔ ∃𝑤𝑥 𝑥𝐴𝑤)
73, 6bitri 275 . . . . . 6 (∃𝑧𝑦 𝑧𝐴𝑦 ↔ ∃𝑤𝑥 𝑥𝐴𝑤)
87notbii 320 . . . . 5 (¬ ∃𝑧𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑤𝑥 𝑥𝐴𝑤)
9 alnex 1782 . . . . 5 (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑧𝑦 𝑧𝐴𝑦)
10 alnex 1782 . . . . 5 (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ¬ ∃𝑤𝑥 𝑥𝐴𝑤)
118, 9, 103bitr4i 303 . . . 4 (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤)
12 noel 4287 . . . . . 6 ¬ 𝑧 ∈ ∅
1312nbn 372 . . . . 5 (¬ ∃𝑦 𝑧𝐴𝑦 ↔ (∃𝑦 𝑧𝐴𝑦𝑧 ∈ ∅))
1413albii 1820 . . . 4 (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦𝑧 ∈ ∅))
15 noel 4287 . . . . . 6 ¬ 𝑤 ∈ ∅
1615nbn 372 . . . . 5 (¬ ∃𝑥 𝑥𝐴𝑤 ↔ (∃𝑥 𝑥𝐴𝑤𝑤 ∈ ∅))
1716albii 1820 . . . 4 (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤𝑤 ∈ ∅))
1811, 14, 173bitr3i 301 . . 3 (∀𝑧(∃𝑦 𝑧𝐴𝑦𝑧 ∈ ∅) ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤𝑤 ∈ ∅))
19 breq1 5098 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑦𝑧𝐴𝑦))
2019exbidv 1922 . . . 4 (𝑥 = 𝑧 → (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦 𝑧𝐴𝑦))
2120eqabcbw 2807 . . 3 ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦𝑧 ∈ ∅))
224exbidv 1922 . . . 4 (𝑦 = 𝑤 → (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥 𝑥𝐴𝑤))
2322eqabcbw 2807 . . 3 ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤𝑤 ∈ ∅))
2418, 21, 233bitr4i 303 . 2 ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅)
25 df-dm 5631 . . 3 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
2625eqeq1i 2738 . 2 (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅)
27 dfrn2 5834 . . 3 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
2827eqeq1i 2738 . 2 (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅)
2924, 26, 283bitr4i 303 1 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2113  {cab 2711  c0 4282   class class class wbr 5095  dom cdm 5621  ran crn 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-cnv 5629  df-dm 5631  df-rn 5632
This theorem is referenced by:  rn0  5872  relrn0  5918  imadisj  6035  rnsnn0  6162  rnmpt0f  6197  f00  6712  f0rn0  6715  2nd0  7936  iinon  8268  onoviun  8271  onnseq  8272  map0b  8815  fodomfib  9222  fodomfibOLD  9224  intrnfi  9309  wdomtr  9470  noinfep  9559  wemapwe  9596  fin23lem31  10243  fin23lem40  10251  isf34lem7  10279  isf34lem6  10280  ttukeylem6  10414  fodomb  10426  rpnnen1lem4  12882  rpnnen1lem5  12883  fseqsupcl  13888  fseqsupubi  13889  dmtrclfv  14929  ruclem11  16153  prmreclem6  16837  0ram  16936  0ram2  16937  0ramcl  16939  gsumval2  18598  ghmrn  19145  gexex  19769  gsumval3  19823  subdrgint  20722  iinopn  22820  hauscmplem  23324  fbasrn  23802  alexsublem  23962  evth  24888  minveclem1  25354  minveclem3b  25358  ovollb2  25420  ovolunlem1a  25427  ovolunlem1  25428  ovoliunlem1  25433  ovoliun2  25437  ioombl1lem4  25492  uniioombllem1  25512  uniioombllem2  25514  uniioombllem6  25519  mbfsup  25595  mbfinf  25596  mbflimsup  25597  itg1climres  25645  itg2monolem1  25681  itg2mono  25684  itg2i1fseq2  25687  itg2cnlem1  25692  minvecolem1  30858  rge0scvg  33985  esumpcvgval  34114  cvmsss2  35341  fin2so  37670  ptrecube  37683  heicant  37718  isbnd3  37847  totbndbnd  37852  rnnonrel  43711  stoweidlem35  46160  hoicvr  46673
  Copyright terms: Public domain W3C validator