MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dm0rn0 Structured version   Visualization version   GIF version

Theorem dm0rn0 5934
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.)
Assertion
Ref Expression
dm0rn0 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)

Proof of Theorem dm0rn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alnex 1780 . . . . . 6 (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥𝑦 𝑥𝐴𝑦)
2 excom 2161 . . . . . 6 (∃𝑥𝑦 𝑥𝐴𝑦 ↔ ∃𝑦𝑥 𝑥𝐴𝑦)
31, 2xchbinx 334 . . . . 5 (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦𝑥 𝑥𝐴𝑦)
4 alnex 1780 . . . . 5 (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦𝑥 𝑥𝐴𝑦)
53, 4bitr4i 278 . . . 4 (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦)
6 noel 4337 . . . . . 6 ¬ 𝑥 ∈ ∅
76nbn 372 . . . . 5 (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦𝑥 ∈ ∅))
87albii 1818 . . . 4 (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦𝑥 ∈ ∅))
9 noel 4337 . . . . . 6 ¬ 𝑦 ∈ ∅
109nbn 372 . . . . 5 (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦𝑦 ∈ ∅))
1110albii 1818 . . . 4 (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦𝑦 ∈ ∅))
125, 8, 113bitr3i 301 . . 3 (∀𝑥(∃𝑦 𝑥𝐴𝑦𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦𝑦 ∈ ∅))
13 eqabcb 2882 . . 3 ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦𝑥 ∈ ∅))
14 eqabcb 2882 . . 3 ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦𝑦 ∈ ∅))
1512, 13, 143bitr4i 303 . 2 ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅)
16 df-dm 5694 . . 3 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
1716eqeq1i 2741 . 2 (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅)
18 dfrn2 5898 . . 3 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
1918eqeq1i 2741 . 2 (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅)
2015, 17, 193bitr4i 303 1 (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1537   = wceq 1539  wex 1778  wcel 2107  {cab 2713  c0 4332   class class class wbr 5142  dom cdm 5684  ran crn 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695
This theorem is referenced by:  rn0  5935  relrn0  5982  imadisj  6097  rnsnn0  6227  rnmpt0f  6262  f00  6789  f0rn0  6792  2nd0  8022  iinon  8381  onoviun  8384  onnseq  8385  map0b  8924  fodomfib  9370  fodomfibOLD  9372  intrnfi  9457  wdomtr  9616  noinfep  9701  wemapwe  9738  fin23lem31  10384  fin23lem40  10392  isf34lem7  10420  isf34lem6  10421  ttukeylem6  10555  fodomb  10567  rpnnen1lem4  13023  rpnnen1lem5  13024  fseqsupcl  14019  fseqsupubi  14020  dmtrclfv  15058  ruclem11  16277  prmreclem6  16960  0ram  17059  0ram2  17060  0ramcl  17062  gsumval2  18700  ghmrn  19248  gexex  19872  gsumval3  19926  subdrgint  20805  iinopn  22909  hauscmplem  23415  fbasrn  23893  alexsublem  24053  evth  24992  minveclem1  25459  minveclem3b  25463  ovollb2  25525  ovolunlem1a  25532  ovolunlem1  25533  ovoliunlem1  25538  ovoliun2  25542  ioombl1lem4  25597  uniioombllem1  25617  uniioombllem2  25619  uniioombllem6  25624  mbfsup  25700  mbfinf  25701  mbflimsup  25702  itg1climres  25750  itg2monolem1  25786  itg2mono  25789  itg2i1fseq2  25792  itg2cnlem1  25797  minvecolem1  30894  rge0scvg  33949  esumpcvgval  34080  cvmsss2  35280  fin2so  37615  ptrecube  37628  heicant  37663  isbnd3  37792  totbndbnd  37797  rnnonrel  43609  stoweidlem35  46055  hoicvr  46568
  Copyright terms: Public domain W3C validator