![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version |
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
Ref | Expression |
---|---|
dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1781 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
2 | excom 2160 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
3 | 1, 2 | xchbinx 333 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
4 | alnex 1781 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
5 | 3, 4 | bitr4i 277 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
6 | noel 4329 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | nbn 371 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
8 | 7 | albii 1819 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
9 | noel 4329 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
10 | 9 | nbn 371 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
11 | 10 | albii 1819 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
12 | 5, 8, 11 | 3bitr3i 300 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
13 | eqabcb 2873 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
14 | eqabcb 2873 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
15 | 12, 13, 14 | 3bitr4i 302 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
16 | df-dm 5685 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
17 | 16 | eqeq1i 2735 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
18 | dfrn2 5887 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
19 | 18 | eqeq1i 2735 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
20 | 15, 17, 19 | 3bitr4i 302 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 ∅c0 4321 class class class wbr 5147 dom cdm 5675 ran crn 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: rn0 5924 relrn0 5967 imadisj 6078 rnsnn0 6206 rnmpt0f 6241 f00 6772 f0rn0 6775 2nd0 7984 iinon 8342 onoviun 8345 onnseq 8346 map0b 8879 fodomfib 9328 intrnfi 9413 wdomtr 9572 noinfep 9657 wemapwe 9694 fin23lem31 10340 fin23lem40 10348 isf34lem7 10376 isf34lem6 10377 ttukeylem6 10511 fodomb 10523 rpnnen1lem4 12968 rpnnen1lem5 12969 fseqsupcl 13946 fseqsupubi 13947 dmtrclfv 14969 ruclem11 16187 prmreclem6 16858 0ram 16957 0ram2 16958 0ramcl 16960 gsumval2 18611 ghmrn 19143 gexex 19762 gsumval3 19816 subdrgint 20562 iinopn 22624 hauscmplem 23130 fbasrn 23608 alexsublem 23768 evth 24705 minveclem1 25172 minveclem3b 25176 ovollb2 25238 ovolunlem1a 25245 ovolunlem1 25246 ovoliunlem1 25251 ovoliun2 25255 ioombl1lem4 25310 uniioombllem1 25330 uniioombllem2 25332 uniioombllem6 25337 mbfsup 25413 mbfinf 25414 mbflimsup 25415 itg1climres 25464 itg2monolem1 25500 itg2mono 25503 itg2i1fseq2 25506 itg2cnlem1 25511 minvecolem1 30394 rge0scvg 33227 esumpcvgval 33374 cvmsss2 34563 fin2so 36778 ptrecube 36791 heicant 36826 isbnd3 36955 totbndbnd 36960 rnnonrel 42644 stoweidlem35 45049 hoicvr 45562 |
Copyright terms: Public domain | W3C validator |