| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version | ||
| Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1781 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
| 2 | excom 2163 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 3 | 1, 2 | xchbinx 334 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
| 4 | alnex 1781 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
| 5 | 3, 4 | bitr4i 278 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
| 6 | noel 4318 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 7 | 6 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 8 | 7 | albii 1819 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
| 9 | noel 4318 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
| 10 | 9 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 11 | 10 | albii 1819 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 12 | 5, 8, 11 | 3bitr3i 301 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
| 13 | eqabcb 2877 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
| 14 | eqabcb 2877 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 16 | df-dm 5669 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 17 | 16 | eqeq1i 2741 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
| 18 | dfrn2 5873 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 19 | 18 | eqeq1i 2741 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 20 | 15, 17, 19 | 3bitr4i 303 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∅c0 4313 class class class wbr 5124 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: rn0 5910 relrn0 5957 imadisj 6072 rnsnn0 6202 rnmpt0f 6237 f00 6765 f0rn0 6768 2nd0 8000 iinon 8359 onoviun 8362 onnseq 8363 map0b 8902 fodomfib 9346 fodomfibOLD 9348 intrnfi 9433 wdomtr 9594 noinfep 9679 wemapwe 9716 fin23lem31 10362 fin23lem40 10370 isf34lem7 10398 isf34lem6 10399 ttukeylem6 10533 fodomb 10545 rpnnen1lem4 13001 rpnnen1lem5 13002 fseqsupcl 14000 fseqsupubi 14001 dmtrclfv 15042 ruclem11 16263 prmreclem6 16946 0ram 17045 0ram2 17046 0ramcl 17048 gsumval2 18669 ghmrn 19217 gexex 19839 gsumval3 19893 subdrgint 20768 iinopn 22845 hauscmplem 23349 fbasrn 23827 alexsublem 23987 evth 24914 minveclem1 25381 minveclem3b 25385 ovollb2 25447 ovolunlem1a 25454 ovolunlem1 25455 ovoliunlem1 25460 ovoliun2 25464 ioombl1lem4 25519 uniioombllem1 25539 uniioombllem2 25541 uniioombllem6 25546 mbfsup 25622 mbfinf 25623 mbflimsup 25624 itg1climres 25672 itg2monolem1 25708 itg2mono 25711 itg2i1fseq2 25714 itg2cnlem1 25719 minvecolem1 30860 rge0scvg 33985 esumpcvgval 34114 cvmsss2 35301 fin2so 37636 ptrecube 37649 heicant 37684 isbnd3 37813 totbndbnd 37818 rnnonrel 43590 stoweidlem35 46044 hoicvr 46557 |
| Copyright terms: Public domain | W3C validator |