![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version |
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
Ref | Expression |
---|---|
dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1783 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
2 | excom 2162 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
3 | 1, 2 | xchbinx 333 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
4 | alnex 1783 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
5 | 3, 4 | bitr4i 277 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
6 | noel 4329 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
8 | 7 | albii 1821 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
9 | noel 4329 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
10 | 9 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
11 | 10 | albii 1821 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
12 | 5, 8, 11 | 3bitr3i 300 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
13 | eqabcb 2875 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
14 | eqabcb 2875 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
15 | 12, 13, 14 | 3bitr4i 302 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
16 | df-dm 5685 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
17 | 16 | eqeq1i 2737 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
18 | dfrn2 5886 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
19 | 18 | eqeq1i 2737 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
20 | 15, 17, 19 | 3bitr4i 302 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∅c0 4321 class class class wbr 5147 dom cdm 5675 ran crn 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: rn0 5923 relrn0 5966 imadisj 6076 rnsnn0 6204 rnmpt0f 6239 f00 6770 f0rn0 6773 2nd0 7978 iinon 8336 onoviun 8339 onnseq 8340 map0b 8873 fodomfib 9322 intrnfi 9407 wdomtr 9566 noinfep 9651 wemapwe 9688 fin23lem31 10334 fin23lem40 10342 isf34lem7 10370 isf34lem6 10371 ttukeylem6 10505 fodomb 10517 rpnnen1lem4 12960 rpnnen1lem5 12961 fseqsupcl 13938 fseqsupubi 13939 dmtrclfv 14961 ruclem11 16179 prmreclem6 16850 0ram 16949 0ram2 16950 0ramcl 16952 gsumval2 18601 ghmrn 19099 gexex 19715 gsumval3 19769 subdrgint 20411 iinopn 22395 hauscmplem 22901 fbasrn 23379 alexsublem 23539 evth 24466 minveclem1 24932 minveclem3b 24936 ovollb2 24997 ovolunlem1a 25004 ovolunlem1 25005 ovoliunlem1 25010 ovoliun2 25014 ioombl1lem4 25069 uniioombllem1 25089 uniioombllem2 25091 uniioombllem6 25096 mbfsup 25172 mbfinf 25173 mbflimsup 25174 itg1climres 25223 itg2monolem1 25259 itg2mono 25262 itg2i1fseq2 25265 itg2cnlem1 25270 minvecolem1 30114 rge0scvg 32917 esumpcvgval 33064 cvmsss2 34253 fin2so 36463 ptrecube 36476 heicant 36511 isbnd3 36640 totbndbnd 36645 rnnonrel 42327 stoweidlem35 44737 hoicvr 45250 |
Copyright terms: Public domain | W3C validator |