| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version | ||
| Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by TM, 24-Jan-2026.) |
| Ref | Expression |
|---|---|
| dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5094 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 2 | breq2 5095 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑧𝐴𝑦 ↔ 𝑧𝐴𝑤)) | |
| 3 | 1, 2 | excomw 2047 | . . . . . . 7 ⊢ (∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ∃𝑦∃𝑧 𝑧𝐴𝑦) |
| 4 | breq2 5095 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) | |
| 5 | 1, 4 | sylan9bbr 510 | . . . . . . . 8 ⊢ ((𝑦 = 𝑤 ∧ 𝑧 = 𝑥) → (𝑧𝐴𝑦 ↔ 𝑥𝐴𝑤)) |
| 6 | 5 | cbvex2vw 2042 | . . . . . . 7 ⊢ (∃𝑦∃𝑧 𝑧𝐴𝑦 ↔ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 7 | 3, 6 | bitri 275 | . . . . . 6 ⊢ (∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 8 | 7 | notbii 320 | . . . . 5 ⊢ (¬ ∃𝑧∃𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑤∃𝑥 𝑥𝐴𝑤) |
| 9 | alnex 1782 | . . . . 5 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ¬ ∃𝑧∃𝑦 𝑧𝐴𝑦) | |
| 10 | alnex 1782 | . . . . 5 ⊢ (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ¬ ∃𝑤∃𝑥 𝑥𝐴𝑤) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . . . 4 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤) |
| 12 | noel 4288 | . . . . . 6 ⊢ ¬ 𝑧 ∈ ∅ | |
| 13 | 12 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑧𝐴𝑦 ↔ (∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 14 | 13 | albii 1820 | . . . 4 ⊢ (∀𝑧 ¬ ∃𝑦 𝑧𝐴𝑦 ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 15 | noel 4288 | . . . . . 6 ⊢ ¬ 𝑤 ∈ ∅ | |
| 16 | 15 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑤 ↔ (∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 17 | 16 | albii 1820 | . . . 4 ⊢ (∀𝑤 ¬ ∃𝑥 𝑥𝐴𝑤 ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 18 | 11, 14, 17 | 3bitr3i 301 | . . 3 ⊢ (∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅) ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 19 | breq1 5094 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑦 ↔ 𝑧𝐴𝑦)) | |
| 20 | 19 | exbidv 1922 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦 𝑧𝐴𝑦)) |
| 21 | 20 | eqabcbw 2805 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑧(∃𝑦 𝑧𝐴𝑦 ↔ 𝑧 ∈ ∅)) |
| 22 | 4 | exbidv 1922 | . . . 4 ⊢ (𝑦 = 𝑤 → (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥 𝑥𝐴𝑤)) |
| 23 | 22 | eqabcbw 2805 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑤(∃𝑥 𝑥𝐴𝑤 ↔ 𝑤 ∈ ∅)) |
| 24 | 18, 21, 23 | 3bitr4i 303 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 25 | df-dm 5626 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 26 | 25 | eqeq1i 2736 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
| 27 | dfrn2 5828 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
| 28 | 27 | eqeq1i 2736 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
| 29 | 24, 26, 28 | 3bitr4i 303 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∅c0 4283 class class class wbr 5091 dom cdm 5616 ran crn 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: rn0 5866 relrn0 5912 imadisj 6029 rnsnn0 6155 rnmpt0f 6190 f00 6705 f0rn0 6708 2nd0 7928 iinon 8260 onoviun 8263 onnseq 8264 map0b 8807 fodomfib 9213 fodomfibOLD 9215 intrnfi 9300 wdomtr 9461 noinfep 9550 wemapwe 9587 fin23lem31 10234 fin23lem40 10242 isf34lem7 10270 isf34lem6 10271 ttukeylem6 10405 fodomb 10417 rpnnen1lem4 12878 rpnnen1lem5 12879 fseqsupcl 13884 fseqsupubi 13885 dmtrclfv 14925 ruclem11 16149 prmreclem6 16833 0ram 16932 0ram2 16933 0ramcl 16935 gsumval2 18594 ghmrn 19142 gexex 19766 gsumval3 19820 subdrgint 20719 iinopn 22818 hauscmplem 23322 fbasrn 23800 alexsublem 23960 evth 24886 minveclem1 25352 minveclem3b 25356 ovollb2 25418 ovolunlem1a 25425 ovolunlem1 25426 ovoliunlem1 25431 ovoliun2 25435 ioombl1lem4 25490 uniioombllem1 25510 uniioombllem2 25512 uniioombllem6 25517 mbfsup 25593 mbfinf 25594 mbflimsup 25595 itg1climres 25643 itg2monolem1 25679 itg2mono 25682 itg2i1fseq2 25685 itg2cnlem1 25690 minvecolem1 30852 rge0scvg 33960 esumpcvgval 34089 cvmsss2 35316 fin2so 37653 ptrecube 37666 heicant 37701 isbnd3 37830 totbndbnd 37835 rnnonrel 43630 stoweidlem35 46079 hoicvr 46592 |
| Copyright terms: Public domain | W3C validator |