Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dm0rn0 | Structured version Visualization version GIF version |
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998.) |
Ref | Expression |
---|---|
dm0rn0 | ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1787 | . . . . . 6 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑥∃𝑦 𝑥𝐴𝑦) | |
2 | excom 2165 | . . . . . 6 ⊢ (∃𝑥∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
3 | 1, 2 | xchbinx 333 | . . . . 5 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) |
4 | alnex 1787 | . . . . 5 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ¬ ∃𝑦∃𝑥 𝑥𝐴𝑦) | |
5 | 3, 4 | bitr4i 277 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦) |
6 | noel 4269 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
7 | 6 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑦 𝑥𝐴𝑦 ↔ (∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
8 | 7 | albii 1825 | . . . 4 ⊢ (∀𝑥 ¬ ∃𝑦 𝑥𝐴𝑦 ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) |
9 | noel 4269 | . . . . . 6 ⊢ ¬ 𝑦 ∈ ∅ | |
10 | 9 | nbn 372 | . . . . 5 ⊢ (¬ ∃𝑥 𝑥𝐴𝑦 ↔ (∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
11 | 10 | albii 1825 | . . . 4 ⊢ (∀𝑦 ¬ ∃𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
12 | 5, 8, 11 | 3bitr3i 300 | . . 3 ⊢ (∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅) ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) |
13 | abeq1 2874 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ ∀𝑥(∃𝑦 𝑥𝐴𝑦 ↔ 𝑥 ∈ ∅)) | |
14 | abeq1 2874 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅ ↔ ∀𝑦(∃𝑥 𝑥𝐴𝑦 ↔ 𝑦 ∈ ∅)) | |
15 | 12, 13, 14 | 3bitr4i 302 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
16 | df-dm 5598 | . . 3 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
17 | 16 | eqeq1i 2744 | . 2 ⊢ (dom 𝐴 = ∅ ↔ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = ∅) |
18 | dfrn2 5794 | . . 3 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
19 | 18 | eqeq1i 2744 | . 2 ⊢ (ran 𝐴 = ∅ ↔ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = ∅) |
20 | 15, 17, 19 | 3bitr4i 302 | 1 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ∅c0 4261 class class class wbr 5078 dom cdm 5588 ran crn 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: rn0 5832 relrn0 5875 imadisj 5985 rnsnn0 6108 rnmpt0f 6143 f00 6652 f0rn0 6655 2nd0 7824 iinon 8155 onoviun 8158 onnseq 8159 map0b 8645 fodomfib 9054 intrnfi 9136 wdomtr 9295 noinfep 9379 wemapwe 9416 fin23lem31 10083 fin23lem40 10091 isf34lem7 10119 isf34lem6 10120 ttukeylem6 10254 fodomb 10266 rpnnen1lem4 12702 rpnnen1lem5 12703 fseqsupcl 13678 fseqsupubi 13679 dmtrclfv 14710 ruclem11 15930 prmreclem6 16603 0ram 16702 0ram2 16703 0ramcl 16705 gsumval2 18351 ghmrn 18828 gexex 19435 gsumval3 19489 subdrgint 20052 iinopn 22032 hauscmplem 22538 fbasrn 23016 alexsublem 23176 evth 24103 minveclem1 24569 minveclem3b 24573 ovollb2 24634 ovolunlem1a 24641 ovolunlem1 24642 ovoliunlem1 24647 ovoliun2 24651 ioombl1lem4 24706 uniioombllem1 24726 uniioombllem2 24728 uniioombllem6 24733 mbfsup 24809 mbfinf 24810 mbflimsup 24811 itg1climres 24860 itg2monolem1 24896 itg2mono 24899 itg2i1fseq2 24902 itg2cnlem1 24907 minvecolem1 29215 rge0scvg 31878 esumpcvgval 32025 cvmsss2 33215 fin2so 35743 ptrecube 35756 heicant 35791 isbnd3 35921 totbndbnd 35926 rnnonrel 41152 stoweidlem35 43530 hoicvr 44040 |
Copyright terms: Public domain | W3C validator |