MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldm0 Structured version   Visualization version   GIF version

Theorem reldm0 5891
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))

Proof of Theorem reldm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5762 . . 3 Rel ∅
2 eqrel 5747 . . 3 ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)))
31, 2mpan2 691 . 2 (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)))
4 eq0 4313 . . 3 (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴)
5 alnex 1781 . . . . . 6 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
6 vex 3451 . . . . . . 7 𝑥 ∈ V
76eldm2 5865 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
85, 7xchbinxr 335 . . . . 5 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴)
9 noel 4301 . . . . . . 7 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
109nbn 372 . . . . . 6 (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
1110albii 1819 . . . . 5 (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
128, 11bitr3i 277 . . . 4 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
1312albii 1819 . . 3 (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))
144, 13bitr2i 276 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ dom 𝐴 = ∅)
153, 14bitrdi 287 1 (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  c0 4296  cop 4595  dom cdm 5638  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648
This theorem is referenced by:  relrn0  5936  relresdm1  6004  coeq0  6228  snres0  6271  fnresdisj  6638  fn0  6649  fresaunres2  6732  funopsn  7120  fsnunfv  7161  frxp  8105  frxp2  8123  frxp3  8130  domss2  9100  swrd0  14623  setsres  17148  pmtrsn  19449  gsumval3  19837  00lsp  20887  metn0  24248  noetasuplem2  27646  noetainflem2  27650  wlkn0  29549  eulerpath  30170  dfrdg2  35783  mbfresfi  37660  mapfzcons1  42705  diophrw  42747  eldioph2lem1  42748  eldioph2lem2  42749  tfsconcatb0  43333  tfsconcat0i  43334  tfsconcat0b  43335  sge0cl  46379  resinsn  48860  resinsnALT  48861
  Copyright terms: Public domain W3C validator