| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldm0 | Structured version Visualization version GIF version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5762 | . . 3 ⊢ Rel ∅ | |
| 2 | eqrel 5747 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) |
| 4 | eq0 4313 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
| 5 | alnex 1781 | . . . . . 6 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 6 | vex 3451 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm2 5865 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 5, 7 | xchbinxr 335 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
| 9 | noel 4301 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 10 | 9 | nbn 372 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 11 | 10 | albii 1819 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 12 | 8, 11 | bitr3i 277 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 13 | 12 | albii 1819 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 14 | 4, 13 | bitr2i 276 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ dom 𝐴 = ∅) |
| 15 | 3, 14 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4296 〈cop 4595 dom cdm 5638 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 |
| This theorem is referenced by: relrn0 5936 relresdm1 6004 coeq0 6228 snres0 6271 fnresdisj 6638 fn0 6649 fresaunres2 6732 funopsn 7120 fsnunfv 7161 frxp 8105 frxp2 8123 frxp3 8130 domss2 9100 swrd0 14623 setsres 17148 pmtrsn 19449 gsumval3 19837 00lsp 20887 metn0 24248 noetasuplem2 27646 noetainflem2 27650 wlkn0 29549 eulerpath 30170 dfrdg2 35783 mbfresfi 37660 mapfzcons1 42705 diophrw 42747 eldioph2lem1 42748 eldioph2lem2 42749 tfsconcatb0 43333 tfsconcat0i 43334 tfsconcat0b 43335 sge0cl 46379 resinsn 48860 resinsnALT 48861 |
| Copyright terms: Public domain | W3C validator |