Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldm0 | Structured version Visualization version GIF version |
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5709 | . . 3 ⊢ Rel ∅ | |
2 | eqrel 5695 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) | |
3 | 1, 2 | mpan2 688 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) |
4 | eq0 4277 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
5 | alnex 1784 | . . . . . 6 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
6 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm2 5810 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
8 | 5, 7 | xchbinxr 335 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
9 | noel 4264 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
10 | 9 | nbn 373 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
11 | 10 | albii 1822 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
12 | 8, 11 | bitr3i 276 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
13 | 12 | albii 1822 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
14 | 4, 13 | bitr2i 275 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ dom 𝐴 = ∅) |
15 | 3, 14 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∅c0 4256 〈cop 4567 dom cdm 5589 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 |
This theorem is referenced by: relrn0 5878 coeq0 6159 fnresdisj 6552 fn0 6564 fresaunres2 6646 funopsn 7020 fsnunfv 7059 frxp 7967 domss2 8923 swrd0 14371 setsres 16879 pmtrsn 19127 gsumval3 19508 00lsp 20243 metn0 23513 wlkn0 27988 eulerpath 28605 funresdm1 30944 snres0 33675 dfrdg2 33771 frxp2 33791 frxp3 33797 noetasuplem2 33937 noetainflem2 33941 mbfresfi 35823 mapfzcons1 40539 diophrw 40581 eldioph2lem1 40582 eldioph2lem2 40583 sge0cl 43919 |
Copyright terms: Public domain | W3C validator |