| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldm0 | Structured version Visualization version GIF version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5765 | . . 3 ⊢ Rel ∅ | |
| 2 | eqrel 5750 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) |
| 4 | eq0 4316 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
| 5 | alnex 1781 | . . . . . 6 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 6 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm2 5868 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 5, 7 | xchbinxr 335 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
| 9 | noel 4304 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 10 | 9 | nbn 372 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 11 | 10 | albii 1819 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 12 | 8, 11 | bitr3i 277 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 13 | 12 | albii 1819 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 14 | 4, 13 | bitr2i 276 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ dom 𝐴 = ∅) |
| 15 | 3, 14 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 〈cop 4598 dom cdm 5641 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 |
| This theorem is referenced by: relrn0 5939 relresdm1 6007 coeq0 6231 snres0 6274 fnresdisj 6641 fn0 6652 fresaunres2 6735 funopsn 7123 fsnunfv 7164 frxp 8108 frxp2 8126 frxp3 8133 domss2 9106 swrd0 14630 setsres 17155 pmtrsn 19456 gsumval3 19844 00lsp 20894 metn0 24255 noetasuplem2 27653 noetainflem2 27657 wlkn0 29556 eulerpath 30177 dfrdg2 35790 mbfresfi 37667 mapfzcons1 42712 diophrw 42754 eldioph2lem1 42755 eldioph2lem2 42756 tfsconcatb0 43340 tfsconcat0i 43341 tfsconcat0b 43342 sge0cl 46386 resinsn 48864 resinsnALT 48865 |
| Copyright terms: Public domain | W3C validator |