| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldm0 | Structured version Visualization version GIF version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 5739 | . . 3 ⊢ Rel ∅ | |
| 2 | eqrel 5724 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅))) |
| 4 | eq0 4300 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
| 5 | alnex 1782 | . . . . . 6 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 6 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6 | eldm2 5841 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 5, 7 | xchbinxr 335 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
| 9 | noel 4288 | . . . . . . 7 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 10 | 9 | nbn 372 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 11 | 10 | albii 1820 | . . . . 5 ⊢ (∀𝑦 ¬ 〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 12 | 8, 11 | bitr3i 277 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 13 | 12 | albii 1820 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅)) |
| 14 | 4, 13 | bitr2i 276 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ∅) ↔ dom 𝐴 = ∅) |
| 15 | 3, 14 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4283 〈cop 4582 dom cdm 5616 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 |
| This theorem is referenced by: relrn0 5912 relresdm1 5982 coeq0 6203 snres0 6245 fnresdisj 6601 fn0 6612 fresaunres2 6695 funopsn 7081 fsnunfv 7121 frxp 8056 frxp2 8074 frxp3 8081 domss2 9049 swrd0 14563 setsres 17086 pmtrsn 19429 gsumval3 19817 00lsp 20912 metn0 24273 noetasuplem2 27671 noetainflem2 27675 wlkn0 29597 eulerpath 30216 dfrdg2 35828 mbfresfi 37705 mapfzcons1 42749 diophrw 42791 eldioph2lem1 42792 eldioph2lem2 42793 tfsconcatb0 43376 tfsconcat0i 43377 tfsconcat0b 43378 sge0cl 46418 resinsn 48902 resinsnALT 48903 |
| Copyright terms: Public domain | W3C validator |