![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldm0 | Structured version Visualization version GIF version |
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
reldm0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 5800 | . . 3 ⊢ Rel ∅ | |
2 | eqrel 5785 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅))) |
4 | eq0 4344 | . . 3 ⊢ (dom 𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ dom 𝐴) | |
5 | alnex 1784 | . . . . . 6 ⊢ (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
6 | vex 3479 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6 | eldm2 5902 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
8 | 5, 7 | xchbinxr 335 | . . . . 5 ⊢ (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ¬ 𝑥 ∈ dom 𝐴) |
9 | noel 4331 | . . . . . . 7 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
10 | 9 | nbn 373 | . . . . . 6 ⊢ (¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
11 | 10 | albii 1822 | . . . . 5 ⊢ (∀𝑦 ¬ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
12 | 8, 11 | bitr3i 277 | . . . 4 ⊢ (¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
13 | 12 | albii 1822 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 ∈ dom 𝐴 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)) |
14 | 4, 13 | bitr2i 276 | . 2 ⊢ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) ↔ dom 𝐴 = ∅) |
15 | 3, 14 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∅c0 4323 ⟨cop 4635 dom cdm 5677 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 |
This theorem is referenced by: relrn0 5969 relresdm1 6034 coeq0 6255 snres0 6298 fnresdisj 6671 fn0 6682 fresaunres2 6764 funopsn 7146 fsnunfv 7185 frxp 8112 frxp2 8130 frxp3 8137 domss2 9136 swrd0 14608 setsres 17111 pmtrsn 19387 gsumval3 19775 00lsp 20592 metn0 23866 noetasuplem2 27237 noetainflem2 27241 wlkn0 28878 eulerpath 29494 dfrdg2 34767 mbfresfi 36534 mapfzcons1 41455 diophrw 41497 eldioph2lem1 41498 eldioph2lem2 41499 tfsconcatb0 42094 tfsconcat0i 42095 tfsconcat0b 42096 sge0cl 45097 |
Copyright terms: Public domain | W3C validator |