| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bbii | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bbii.1 | ⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bbii | ⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) |
| 3 | 2 | necon1bbii 2981 | . 2 ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: xpeq0 6149 dmsn0 6198 disjex 32573 disjexc 32574 suppss3 32701 map0cor 48833 |
| Copyright terms: Public domain | W3C validator |