Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2bbii | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon2bbii.1 | ⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necon2bbii | ⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 ≠ 𝐵) | |
2 | 1 | bicomi 223 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝜑) |
3 | 2 | necon1bbii 2992 | . 2 ⊢ (¬ 𝜑 ↔ 𝐴 = 𝐵) |
4 | 3 | bicomi 223 | 1 ⊢ (𝐴 = 𝐵 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: xpeq0 6052 dmsn0 6101 disjex 30832 disjexc 30833 suppss3 30961 map0cor 46070 |
Copyright terms: Public domain | W3C validator |