Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  map0cor Structured version   Visualization version   GIF version

Theorem map0cor 48847
Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
map0cor.1 (𝜑𝐴𝑉)
map0cor.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
map0cor (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem map0cor
StepHypRef Expression
1 map0cor.2 . 2 (𝜑𝐵𝑊)
2 map0cor.1 . 2 (𝜑𝐴𝑉)
3 biid 261 . . . . . . 7 (𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅)
43necon2bbii 2977 . . . . . 6 (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)
54imbi2i 336 . . . . 5 ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐵 = ∅ → ¬ 𝐴 ≠ ∅))
6 imnan 399 . . . . 5 ((𝐵 = ∅ → ¬ 𝐴 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))
75, 6bitri 275 . . . 4 ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))
8 map0g 8860 . . . . 5 ((𝐵𝑊𝐴𝑉) → ((𝐵m 𝐴) = ∅ ↔ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)))
98notbid 318 . . . 4 ((𝐵𝑊𝐴𝑉) → (¬ (𝐵m 𝐴) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)))
107, 9bitr4id 290 . . 3 ((𝐵𝑊𝐴𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵m 𝐴) = ∅))
11 neq0 4318 . . . 4 (¬ (𝐵m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵m 𝐴))
1211a1i 11 . . 3 ((𝐵𝑊𝐴𝑉) → (¬ (𝐵m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵m 𝐴)))
13 elmapg 8815 . . . 4 ((𝐵𝑊𝐴𝑉) → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
1413exbidv 1921 . . 3 ((𝐵𝑊𝐴𝑉) → (∃𝑓 𝑓 ∈ (𝐵m 𝐴) ↔ ∃𝑓 𝑓:𝐴𝐵))
1510, 12, 143bitrd 305 . 2 ((𝐵𝑊𝐴𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
161, 2, 15syl2anc 584 1 (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  c0 4299  wf 6510  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator