| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > map0cor | Structured version Visualization version GIF version | ||
| Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| map0cor.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| map0cor.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| map0cor | ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0cor.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | map0cor.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | biid 261 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅) | |
| 4 | 3 | necon2bbii 2983 | . . . . . 6 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
| 5 | 4 | imbi2i 336 | . . . . 5 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐵 = ∅ → ¬ 𝐴 ≠ ∅)) |
| 6 | imnan 399 | . . . . 5 ⊢ ((𝐵 = ∅ → ¬ 𝐴 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) |
| 8 | map0g 8898 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 ↑m 𝐴) = ∅ ↔ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) | |
| 9 | 8 | notbid 318 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) |
| 10 | 7, 9 | bitr4id 290 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 ↑m 𝐴) = ∅)) |
| 11 | neq0 4327 | . . . 4 ⊢ (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴))) |
| 13 | elmapg 8853 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) | |
| 14 | 13 | exbidv 1921 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| 15 | 10, 12, 14 | 3bitrd 305 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| 16 | 1, 2, 15 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 ⟶wf 6527 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |