Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  map0cor Structured version   Visualization version   GIF version

Theorem map0cor 48979
Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
map0cor.1 (𝜑𝐴𝑉)
map0cor.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
map0cor (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑉   𝑓,𝑊
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem map0cor
StepHypRef Expression
1 map0cor.2 . 2 (𝜑𝐵𝑊)
2 map0cor.1 . 2 (𝜑𝐴𝑉)
3 biid 261 . . . . . . 7 (𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅)
43necon2bbii 2980 . . . . . 6 (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅)
54imbi2i 336 . . . . 5 ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐵 = ∅ → ¬ 𝐴 ≠ ∅))
6 imnan 399 . . . . 5 ((𝐵 = ∅ → ¬ 𝐴 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))
75, 6bitri 275 . . . 4 ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))
8 map0g 8814 . . . . 5 ((𝐵𝑊𝐴𝑉) → ((𝐵m 𝐴) = ∅ ↔ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)))
98notbid 318 . . . 4 ((𝐵𝑊𝐴𝑉) → (¬ (𝐵m 𝐴) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)))
107, 9bitr4id 290 . . 3 ((𝐵𝑊𝐴𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵m 𝐴) = ∅))
11 neq0 4301 . . . 4 (¬ (𝐵m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵m 𝐴))
1211a1i 11 . . 3 ((𝐵𝑊𝐴𝑉) → (¬ (𝐵m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵m 𝐴)))
13 elmapg 8769 . . . 4 ((𝐵𝑊𝐴𝑉) → (𝑓 ∈ (𝐵m 𝐴) ↔ 𝑓:𝐴𝐵))
1413exbidv 1922 . . 3 ((𝐵𝑊𝐴𝑉) → (∃𝑓 𝑓 ∈ (𝐵m 𝐴) ↔ ∃𝑓 𝑓:𝐴𝐵))
1510, 12, 143bitrd 305 . 2 ((𝐵𝑊𝐴𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
161, 2, 15syl2anc 584 1 (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282  wf 6482  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator