![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > map0cor | Structured version Visualization version GIF version |
Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
map0cor.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
map0cor.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
map0cor | ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | map0cor.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | map0cor.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | biid 260 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅) | |
4 | 3 | necon2bbii 2990 | . . . . . 6 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
5 | 4 | imbi2i 335 | . . . . 5 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐵 = ∅ → ¬ 𝐴 ≠ ∅)) |
6 | imnan 398 | . . . . 5 ⊢ ((𝐵 = ∅ → ¬ 𝐴 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) |
8 | map0g 8880 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 ↑m 𝐴) = ∅ ↔ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) | |
9 | 8 | notbid 317 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) |
10 | 7, 9 | bitr4id 289 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 ↑m 𝐴) = ∅)) |
11 | neq0 4344 | . . . 4 ⊢ (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴))) |
13 | elmapg 8835 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) | |
14 | 13 | exbidv 1922 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
15 | 10, 12, 14 | 3bitrd 304 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
16 | 1, 2, 15 | syl2anc 582 | 1 ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ∅c0 4321 ⟶wf 6538 (class class class)co 7411 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |