| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > map0cor | Structured version Visualization version GIF version | ||
| Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| map0cor.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| map0cor.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| map0cor | ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0cor.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | map0cor.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | biid 261 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅) | |
| 4 | 3 | necon2bbii 2979 | . . . . . 6 ⊢ (𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅) |
| 5 | 4 | imbi2i 336 | . . . . 5 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐵 = ∅ → ¬ 𝐴 ≠ ∅)) |
| 6 | imnan 399 | . . . . 5 ⊢ ((𝐵 = ∅ → ¬ 𝐴 ≠ ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅)) |
| 8 | map0g 8808 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 ↑m 𝐴) = ∅ ↔ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) | |
| 9 | 8 | notbid 318 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ¬ (𝐵 = ∅ ∧ 𝐴 ≠ ∅))) |
| 10 | 7, 9 | bitr4id 290 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ¬ (𝐵 ↑m 𝐴) = ∅)) |
| 11 | neq0 4302 | . . . 4 ⊢ (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
| 12 | 11 | a1i 11 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (¬ (𝐵 ↑m 𝐴) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴))) |
| 13 | elmapg 8763 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐵)) | |
| 14 | 13 | exbidv 1922 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (∃𝑓 𝑓 ∈ (𝐵 ↑m 𝐴) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| 15 | 10, 12, 14 | 3bitrd 305 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| 16 | 1, 2, 15 | syl2anc 584 | 1 ⊢ (𝜑 → ((𝐵 = ∅ → 𝐴 = ∅) ↔ ∃𝑓 𝑓:𝐴⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |