MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsn0 Structured version   Visualization version   GIF version

Theorem dmsn0 6165
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0 dom {∅} = ∅

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 5671 . 2 ¬ ∅ ∈ (V × V)
2 dmsnn0 6163 . . 3 (∅ ∈ (V × V) ↔ dom {∅} ≠ ∅)
32necon2bbii 2992 . 2 (dom {∅} = ∅ ↔ ¬ ∅ ∈ (V × V))
41, 3mpbir 230 1 dom {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  Vcvv 3447  c0 4286  {csn 4590   × cxp 5635  dom cdm 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-xp 5643  df-dm 5647
This theorem is referenced by:  cnvsn0  6166  dmsnopss  6170  1st0  7931  2nd0  7932
  Copyright terms: Public domain W3C validator