![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsn0 | Structured version Visualization version GIF version |
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
dmsn0 | ⊢ dom {∅} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5389 | . 2 ⊢ ¬ ∅ ∈ (V × V) | |
2 | dmsnn0 5854 | . . 3 ⊢ (∅ ∈ (V × V) ↔ dom {∅} ≠ ∅) | |
3 | 2 | necon2bbii 3019 | . 2 ⊢ (dom {∅} = ∅ ↔ ¬ ∅ ∈ (V × V)) |
4 | 1, 3 | mpbir 223 | 1 ⊢ dom {∅} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ∅c0 4140 {csn 4397 × cxp 5353 dom cdm 5355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 df-dm 5365 |
This theorem is referenced by: cnvsn0 5857 dmsnopss 5861 1st0 7451 2nd0 7452 |
Copyright terms: Public domain | W3C validator |