| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsn0 | Structured version Visualization version GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5653 | . 2 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnn0 6156 | . . 3 ⊢ (∅ ∈ (V × V) ↔ dom {∅} ≠ ∅) | |
| 3 | 2 | necon2bbii 2976 | . 2 ⊢ (dom {∅} = ∅ ↔ ¬ ∅ ∈ (V × V)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ dom {∅} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {csn 4577 × cxp 5617 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 |
| This theorem is referenced by: cnvsn0 6159 dmsnopss 6163 1st0 7930 2nd0 7931 |
| Copyright terms: Public domain | W3C validator |