MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsn0 Structured version   Visualization version   GIF version

Theorem dmsn0 6101
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0 dom {∅} = ∅

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 5614 . 2 ¬ ∅ ∈ (V × V)
2 dmsnn0 6099 . . 3 (∅ ∈ (V × V) ↔ dom {∅} ≠ ∅)
32necon2bbii 2994 . 2 (dom {∅} = ∅ ↔ ¬ ∅ ∈ (V × V))
41, 3mpbir 230 1 dom {∅} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   × cxp 5578  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590
This theorem is referenced by:  cnvsn0  6102  dmsnopss  6106  1st0  7810  2nd0  7811
  Copyright terms: Public domain W3C validator