| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsn0 | Structured version Visualization version GIF version | ||
| Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmsn0 | ⊢ dom {∅} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5648 | . 2 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | dmsnn0 6154 | . . 3 ⊢ (∅ ∈ (V × V) ↔ dom {∅} ≠ ∅) | |
| 3 | 2 | necon2bbii 2979 | . 2 ⊢ (dom {∅} = ∅ ↔ ¬ ∅ ∈ (V × V)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ dom {∅} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 × cxp 5612 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 |
| This theorem is referenced by: cnvsn0 6157 dmsnopss 6161 1st0 7927 2nd0 7928 |
| Copyright terms: Public domain | W3C validator |