Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss3 Structured version   Visualization version   GIF version

Theorem suppss3 30961
Description: Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
suppss3.1 𝐺 = (𝑥𝐴𝐵)
suppss3.a (𝜑𝐴𝑉)
suppss3.z (𝜑𝑍𝑊)
suppss3.2 (𝜑𝐹 Fn 𝐴)
suppss3.3 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
Assertion
Ref Expression
suppss3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppss3
StepHypRef Expression
1 suppss3.1 . . 3 𝐺 = (𝑥𝐴𝐵)
21oveq1i 7265 . 2 (𝐺 supp 𝑍) = ((𝑥𝐴𝐵) supp 𝑍)
3 simpl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝜑)
4 eldifi 4057 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
54adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝑥𝐴)
6 suppss3.2 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
7 suppss3.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
8 fnex 7075 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
96, 7, 8syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
10 suppss3.z . . . . . . . . . . . . 13 (𝜑𝑍𝑊)
11 suppimacnv 7961 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
129, 10, 11syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1312eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ 𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))))
14 elpreima 6917 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
156, 14syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1613, 15bitrd 278 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1716baibd 539 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1817notbid 317 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1918biimpd 228 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
2019expimpd 453 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
21 eldif 3893 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
22 fvex 6769 . . . . . . . 8 (𝐹𝑥) ∈ V
23 eldifsn 4717 . . . . . . . 8 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
2422, 23mpbiran 705 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍)
2524necon2bbii 2994 . . . . . 6 ((𝐹𝑥) = 𝑍 ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍}))
2620, 21, 253imtr4g 295 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → (𝐹𝑥) = 𝑍))
2726imp 406 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
28 suppss3.3 . . . 4 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
293, 5, 27, 28syl3anc 1369 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝐵 = 𝑍)
3029, 7suppss2 7987 . 2 (𝜑 → ((𝑥𝐴𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
312, 30eqsstrid 3965 1 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  {csn 4558  cmpt 5153  ccnv 5579  cima 5583   Fn wfn 6413  cfv 6418  (class class class)co 7255   supp csupp 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-supp 7949
This theorem is referenced by:  eulerpartlems  32227
  Copyright terms: Public domain W3C validator