Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss3 Structured version   Visualization version   GIF version

Theorem suppss3 32698
Description: Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
suppss3.1 𝐺 = (𝑥𝐴𝐵)
suppss3.a (𝜑𝐴𝑉)
suppss3.z (𝜑𝑍𝑊)
suppss3.2 (𝜑𝐹 Fn 𝐴)
suppss3.3 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
Assertion
Ref Expression
suppss3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppss3
StepHypRef Expression
1 suppss3.1 . . 3 𝐺 = (𝑥𝐴𝐵)
21oveq1i 7351 . 2 (𝐺 supp 𝑍) = ((𝑥𝐴𝐵) supp 𝑍)
3 simpl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝜑)
4 eldifi 4076 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
54adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝑥𝐴)
6 suppss3.2 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
7 suppss3.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
8 fnex 7146 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
96, 7, 8syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
10 suppss3.z . . . . . . . . . . . . 13 (𝜑𝑍𝑊)
11 suppimacnv 8099 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
129, 10, 11syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1312eleq2d 2817 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ 𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))))
14 elpreima 6986 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
156, 14syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1613, 15bitrd 279 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1716baibd 539 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1817notbid 318 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1918biimpd 229 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
2019expimpd 453 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
21 eldif 3907 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
22 fvex 6830 . . . . . . . 8 (𝐹𝑥) ∈ V
23 eldifsn 4733 . . . . . . . 8 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
2422, 23mpbiran 709 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍)
2524necon2bbii 2979 . . . . . 6 ((𝐹𝑥) = 𝑍 ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍}))
2620, 21, 253imtr4g 296 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → (𝐹𝑥) = 𝑍))
2726imp 406 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
28 suppss3.3 . . . 4 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
293, 5, 27, 28syl3anc 1373 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝐵 = 𝑍)
3029, 7suppss2 8125 . 2 (𝜑 → ((𝑥𝐴𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
312, 30eqsstrid 3968 1 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  wss 3897  {csn 4571  cmpt 5167  ccnv 5610  cima 5614   Fn wfn 6471  cfv 6476  (class class class)co 7341   supp csupp 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-supp 8086
This theorem is referenced by:  evls1fldgencl  33675  eulerpartlems  34365
  Copyright terms: Public domain W3C validator