Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss3 Structured version   Visualization version   GIF version

Theorem suppss3 32454
Description: Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
suppss3.1 𝐺 = (𝑥𝐴𝐵)
suppss3.a (𝜑𝐴𝑉)
suppss3.z (𝜑𝑍𝑊)
suppss3.2 (𝜑𝐹 Fn 𝐴)
suppss3.3 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
Assertion
Ref Expression
suppss3 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppss3
StepHypRef Expression
1 suppss3.1 . . 3 𝐺 = (𝑥𝐴𝐵)
21oveq1i 7414 . 2 (𝐺 supp 𝑍) = ((𝑥𝐴𝐵) supp 𝑍)
3 simpl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝜑)
4 eldifi 4121 . . . . 5 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
54adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝑥𝐴)
6 suppss3.2 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
7 suppss3.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
8 fnex 7213 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
96, 7, 8syl2anc 583 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
10 suppss3.z . . . . . . . . . . . . 13 (𝜑𝑍𝑊)
11 suppimacnv 8156 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
129, 10, 11syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
1312eleq2d 2813 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ 𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))))
14 elpreima 7052 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
156, 14syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1613, 15bitrd 279 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
1716baibd 539 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1817notbid 318 . . . . . . . 8 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
1918biimpd 228 . . . . . . 7 ((𝜑𝑥𝐴) → (¬ 𝑥 ∈ (𝐹 supp 𝑍) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
2019expimpd 453 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)) → ¬ (𝐹𝑥) ∈ (V ∖ {𝑍})))
21 eldif 3953 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐹 supp 𝑍)))
22 fvex 6897 . . . . . . . 8 (𝐹𝑥) ∈ V
23 eldifsn 4785 . . . . . . . 8 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
2422, 23mpbiran 706 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍)
2524necon2bbii 2986 . . . . . 6 ((𝐹𝑥) = 𝑍 ↔ ¬ (𝐹𝑥) ∈ (V ∖ {𝑍}))
2620, 21, 253imtr4g 296 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → (𝐹𝑥) = 𝑍))
2726imp 406 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
28 suppss3.3 . . . 4 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)
293, 5, 27, 28syl3anc 1368 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → 𝐵 = 𝑍)
3029, 7suppss2 8183 . 2 (𝜑 → ((𝑥𝐴𝐵) supp 𝑍) ⊆ (𝐹 supp 𝑍))
312, 30eqsstrid 4025 1 (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  Vcvv 3468  cdif 3940  wss 3943  {csn 4623  cmpt 5224  ccnv 5668  cima 5672   Fn wfn 6531  cfv 6536  (class class class)co 7404   supp csupp 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-supp 8144
This theorem is referenced by:  evls1fldgencl  33263  eulerpartlems  33889
  Copyright terms: Public domain W3C validator