| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq0 | Structured version Visualization version GIF version | ||
| Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
| Ref | Expression |
|---|---|
| xpeq0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpnz 6153 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
| 2 | 1 | necon2bbii 2984 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
| 3 | ianor 983 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅)) | |
| 4 | nne 2937 | . . 3 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
| 5 | nne 2937 | . . 3 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
| 6 | 4, 5 | orbi12i 914 | . 2 ⊢ ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2933 ∅c0 4313 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 |
| This theorem is referenced by: xpcan 6170 xpcan2 6171 frxp 8130 rankxplim3 9900 xpcbas 18195 metn0 24304 hashxpe 32791 filnetlem4 36404 homf0 48951 fucofvalne 49203 |
| Copyright terms: Public domain | W3C validator |