| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq0 | Structured version Visualization version GIF version | ||
| Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
| Ref | Expression |
|---|---|
| xpeq0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpnz 6101 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
| 2 | 1 | necon2bbii 2979 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
| 3 | ianor 983 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅)) | |
| 4 | nne 2932 | . . 3 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
| 5 | nne 2932 | . . 3 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
| 6 | 4, 5 | orbi12i 914 | . 2 ⊢ ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| 7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ≠ wne 2928 ∅c0 4278 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 |
| This theorem is referenced by: xpcan 6118 xpcan2 6119 frxp 8051 rankxplim3 9769 xpcbas 18079 metn0 24270 hashxpe 32781 filnetlem4 36415 homf0 49041 fucofvalne 49357 |
| Copyright terms: Public domain | W3C validator |