Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq0 | Structured version Visualization version GIF version |
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpeq0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6036 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | 1 | necon2bbii 2993 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
3 | ianor 982 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅)) | |
4 | nne 2945 | . . 3 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
5 | nne 2945 | . . 3 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
6 | 4, 5 | orbi12i 915 | . 2 ⊢ ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
7 | 2, 3, 6 | 3bitri 300 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ≠ wne 2941 ∅c0 4251 × cxp 5563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pr 5336 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-br 5068 df-opab 5130 df-xp 5571 df-rel 5572 df-cnv 5573 |
This theorem is referenced by: xpcan 6053 xpcan2 6054 frxp 7913 rankxplim3 9521 xpcbas 17709 metn0 23282 hashxpe 30871 filnetlem4 34333 |
Copyright terms: Public domain | W3C validator |