![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq0 | Structured version Visualization version GIF version |
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpeq0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6190 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | 1 | necon2bbii 2998 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
3 | ianor 982 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅)) | |
4 | nne 2950 | . . 3 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
5 | nne 2950 | . . 3 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
6 | 4, 5 | orbi12i 913 | . 2 ⊢ ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
7 | 2, 3, 6 | 3bitri 297 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ≠ wne 2946 ∅c0 4352 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: xpcan 6207 xpcan2 6208 frxp 8167 rankxplim3 9950 xpcbas 18247 metn0 24391 hashxpe 32814 filnetlem4 36347 |
Copyright terms: Public domain | W3C validator |