MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq0 Structured version   Visualization version   GIF version

Theorem xpeq0 6010
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpeq0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))

Proof of Theorem xpeq0
StepHypRef Expression
1 xpnz 6009 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
21necon2bbii 3065 . 2 ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
3 ianor 977 . 2 (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅))
4 nne 3018 . . 3 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
5 nne 3018 . . 3 𝐵 ≠ ∅ ↔ 𝐵 = ∅)
64, 5orbi12i 910 . 2 ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
72, 3, 63bitri 299 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1530  wne 3014  c0 4289   × cxp 5546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556
This theorem is referenced by:  xpcan  6026  xpcan2  6027  frxp  7812  rankxplim3  9302  xpcbas  17420  metn0  22962  hashxpe  30521  filnetlem4  33717
  Copyright terms: Public domain W3C validator