MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq0 Structured version   Visualization version   GIF version

Theorem xpeq0 6191
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpeq0 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))

Proof of Theorem xpeq0
StepHypRef Expression
1 xpnz 6190 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
21necon2bbii 2998 . 2 ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
3 ianor 982 . 2 (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅))
4 nne 2950 . . 3 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
5 nne 2950 . . 3 𝐵 ≠ ∅ ↔ 𝐵 = ∅)
64, 5orbi12i 913 . 2 ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
72, 3, 63bitri 297 1 ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846   = wceq 1537  wne 2946  c0 4352   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  xpcan  6207  xpcan2  6208  frxp  8167  rankxplim3  9950  xpcbas  18247  metn0  24391  hashxpe  32814  filnetlem4  36347
  Copyright terms: Public domain W3C validator