Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq0 | Structured version Visualization version GIF version |
Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpeq0 | ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 6051 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | 1 | necon2bbii 2994 | . 2 ⊢ ((𝐴 × 𝐵) = ∅ ↔ ¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
3 | ianor 978 | . 2 ⊢ (¬ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅)) | |
4 | nne 2946 | . . 3 ⊢ (¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅) | |
5 | nne 2946 | . . 3 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
6 | 4, 5 | orbi12i 911 | . 2 ⊢ ((¬ 𝐴 ≠ ∅ ∨ ¬ 𝐵 ≠ ∅) ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
7 | 2, 3, 6 | 3bitri 296 | 1 ⊢ ((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ≠ wne 2942 ∅c0 4253 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: xpcan 6068 xpcan2 6069 frxp 7938 rankxplim3 9570 xpcbas 17811 metn0 23421 hashxpe 31029 filnetlem4 34497 |
Copyright terms: Public domain | W3C validator |