![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjex | Structured version Visualization version GIF version |
Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.) |
Ref | Expression |
---|---|
disjex | ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 866 | . 2 ⊢ ((𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
2 | df-in 3956 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
3 | 2 | neeq1i 3003 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅) |
4 | abn0 4381 | . . . . 5 ⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅ ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 275 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) |
6 | 5 | necon2bbii 2990 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
7 | 6 | orbi2i 909 | . 2 ⊢ ((𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅) ↔ (𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
8 | imor 849 | . 2 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
9 | 1, 7, 8 | 3bitr4ri 303 | 1 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 ≠ wne 2938 ∩ cin 3948 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-ne 2939 df-dif 3952 df-in 3956 df-nul 4324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |