Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjex Structured version   Visualization version   GIF version

Theorem disjex 30931
Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.)
Assertion
Ref Expression
disjex ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem disjex
StepHypRef Expression
1 orcom 867 . 2 ((𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧𝐴𝑧𝐵)) ↔ (¬ ∃𝑧(𝑧𝐴𝑧𝐵) ∨ 𝐴 = 𝐵))
2 df-in 3894 . . . . . 6 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
32neeq1i 3008 . . . . 5 ((𝐴𝐵) ≠ ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ≠ ∅)
4 abn0 4314 . . . . 5 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} ≠ ∅ ↔ ∃𝑧(𝑧𝐴𝑧𝐵))
53, 4bitr2i 275 . . . 4 (∃𝑧(𝑧𝐴𝑧𝐵) ↔ (𝐴𝐵) ≠ ∅)
65necon2bbii 2995 . . 3 ((𝐴𝐵) = ∅ ↔ ¬ ∃𝑧(𝑧𝐴𝑧𝐵))
76orbi2i 910 . 2 ((𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅) ↔ (𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧𝐴𝑧𝐵)))
8 imor 850 . 2 ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵) ↔ (¬ ∃𝑧(𝑧𝐴𝑧𝐵) ∨ 𝐴 = 𝐵))
91, 7, 83bitr4ri 304 1 ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  cin 3886  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-ne 2944  df-dif 3890  df-in 3894  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator