Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjex | Structured version Visualization version GIF version |
Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016.) |
Ref | Expression |
---|---|
disjex | ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 867 | . 2 ⊢ ((𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
2 | df-in 3894 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
3 | 2 | neeq1i 3008 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅) |
4 | abn0 4314 | . . . . 5 ⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅ ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
5 | 3, 4 | bitr2i 275 | . . . 4 ⊢ (∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) |
6 | 5 | necon2bbii 2995 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
7 | 6 | orbi2i 910 | . 2 ⊢ ((𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅) ↔ (𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
8 | imor 850 | . 2 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
9 | 1, 7, 8 | 3bitr4ri 304 | 1 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-dif 3890 df-in 3894 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |