![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjexc | Structured version Visualization version GIF version |
Description: A variant of disjex 32257, applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016.) |
Ref | Expression |
---|---|
disjexc.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
disjexc | ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjexc.1 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑥 = 𝑦) → (∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵)) |
3 | orcom 867 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
4 | df-in 3955 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} | |
5 | 4 | neeq1i 3004 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅) |
6 | abn0 4380 | . . . . . 6 ⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ≠ ∅ ↔ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
7 | 5, 6 | bitr2i 276 | . . . . 5 ⊢ (∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ (𝐴 ∩ 𝐵) ≠ ∅) |
8 | 7 | necon2bbii 2991 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
9 | 8 | orbi2i 910 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅) ↔ (𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
10 | imor 850 | . . 3 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵) ↔ (¬ ∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ∨ 𝐴 = 𝐵)) | |
11 | 3, 9, 10 | 3bitr4i 303 | . 2 ⊢ ((𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅) ↔ (∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝐴 = 𝐵)) |
12 | 2, 11 | sylibr 233 | 1 ⊢ ((∃𝑧(𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 ∩ cin 3947 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-ne 2940 df-dif 3951 df-in 3955 df-nul 4323 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |