Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjexc Structured version   Visualization version   GIF version

Theorem disjexc 32258
Description: A variant of disjex 32257, applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016.)
Hypothesis
Ref Expression
disjexc.1 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
disjexc ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem disjexc
StepHypRef Expression
1 disjexc.1 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
21imim2i 16 . 2 ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝑥 = 𝑦) → (∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵))
3 orcom 867 . . 3 ((𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧𝐴𝑧𝐵)) ↔ (¬ ∃𝑧(𝑧𝐴𝑧𝐵) ∨ 𝐴 = 𝐵))
4 df-in 3955 . . . . . . 7 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
54neeq1i 3004 . . . . . 6 ((𝐴𝐵) ≠ ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ≠ ∅)
6 abn0 4380 . . . . . 6 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} ≠ ∅ ↔ ∃𝑧(𝑧𝐴𝑧𝐵))
75, 6bitr2i 276 . . . . 5 (∃𝑧(𝑧𝐴𝑧𝐵) ↔ (𝐴𝐵) ≠ ∅)
87necon2bbii 2991 . . . 4 ((𝐴𝐵) = ∅ ↔ ¬ ∃𝑧(𝑧𝐴𝑧𝐵))
98orbi2i 910 . . 3 ((𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅) ↔ (𝐴 = 𝐵 ∨ ¬ ∃𝑧(𝑧𝐴𝑧𝐵)))
10 imor 850 . . 3 ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵) ↔ (¬ ∃𝑧(𝑧𝐴𝑧𝐵) ∨ 𝐴 = 𝐵))
113, 9, 103bitr4i 303 . 2 ((𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅) ↔ (∃𝑧(𝑧𝐴𝑧𝐵) → 𝐴 = 𝐵))
122, 11sylibr 233 1 ((∃𝑧(𝑧𝐴𝑧𝐵) → 𝑥 = 𝑦) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wne 2939  cin 3947  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-ne 2940  df-dif 3951  df-in 3955  df-nul 4323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator