| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2974 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2929 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necom 2981 neeq1i 2992 neeq2i 2993 neeq12i 2994 rnsnn0 6155 onoviun 8263 onnseq 8264 intrnfi 9300 wdomtr 9461 noinfep 9550 wemapwe 9587 scott0s 9781 cplem1 9782 karden 9788 acndom2 9945 dfac5lem3 10016 fin23lem31 10234 fin23lem40 10242 isf34lem5 10269 isf34lem7 10270 isf34lem6 10271 axrrecex 11054 negne0bi 11434 rpnnen1lem4 12878 rpnnen1lem5 12879 fseqsupcl 13884 limsupgre 15388 isercolllem3 15574 rpnnen2lem12 16134 ruclem11 16149 3dvds 16242 prmreclem6 16833 0ram 16932 0ram2 16933 0ramcl 16935 gsumval2 18594 ghmrn 19142 gexex 19766 gsumval3 19820 subdrgint 20719 iinopn 22818 cnconn 23338 1stcfb 23361 qtopeu 23632 fbasrn 23800 alexsublem 23960 evth 24886 minveclem1 25352 minveclem3b 25356 ovollb2 25418 ovolunlem1a 25425 ovolunlem1 25426 ovoliunlem1 25431 ovoliun2 25435 ioombl1lem4 25490 uniioombllem1 25510 uniioombllem2 25512 uniioombllem6 25517 mbfsup 25593 mbfinf 25594 mbflimsup 25595 itg1climres 25643 itg2monolem1 25679 itg2mono 25682 itg2i1fseq2 25685 sincos4thpi 26450 nosepnelem 27619 axlowdimlem13 28933 eulerpath 30219 siii 30831 minvecolem1 30852 bcsiALT 31157 h1de2bi 31532 h1de2ctlem 31533 nmlnopgt0i 31975 wrdpmtrlast 33060 dimval 33611 dimvalfi 33612 rge0scvg 33960 umgracycusgr 35196 cusgracyclt3v 35198 erdszelem5 35237 cvmsss2 35316 elrn3 35804 rankeq1o 36211 fin2so 37653 heicant 37701 scottn0f 38216 psspwb 42267 fnwe2lem2 43090 sqrtcval 43680 |
| Copyright terms: Public domain | W3C validator |