![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version |
Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
2 | 1 | necon3abii 2993 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
3 | df-ne 2947 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necom 3000 neeq1i 3011 neeq2i 3012 neeq12i 3013 rnsnn0 6239 onoviun 8399 onnseq 8400 intrnfi 9485 wdomtr 9644 noinfep 9729 wemapwe 9766 scott0s 9957 cplem1 9958 karden 9964 acndom2 10123 dfac5lem3 10194 fin23lem31 10412 fin23lem40 10420 isf34lem5 10447 isf34lem7 10448 isf34lem6 10449 axrrecex 11232 negne0bi 11609 rpnnen1lem4 13045 rpnnen1lem5 13046 fseqsupcl 14028 limsupgre 15527 isercolllem3 15715 rpnnen2lem12 16273 ruclem11 16288 3dvds 16379 prmreclem6 16968 0ram 17067 0ram2 17068 0ramcl 17070 gsumval2 18724 ghmrn 19269 gexex 19895 gsumval3 19949 subdrgint 20826 iinopn 22929 cnconn 23451 1stcfb 23474 qtopeu 23745 fbasrn 23913 alexsublem 24073 evth 25010 minveclem1 25477 minveclem3b 25481 ovollb2 25543 ovolunlem1a 25550 ovolunlem1 25551 ovoliunlem1 25556 ovoliun2 25560 ioombl1lem4 25615 uniioombllem1 25635 uniioombllem2 25637 uniioombllem6 25642 mbfsup 25718 mbfinf 25719 mbflimsup 25720 itg1climres 25769 itg2monolem1 25805 itg2mono 25808 itg2i1fseq2 25811 sincos4thpi 26573 nosepnelem 27742 axlowdimlem13 28987 eulerpath 30273 siii 30885 minvecolem1 30906 bcsiALT 31211 h1de2bi 31586 h1de2ctlem 31587 nmlnopgt0i 32029 wrdpmtrlast 33086 dimval 33613 dimvalfi 33614 rge0scvg 33895 umgracycusgr 35122 cusgracyclt3v 35124 erdszelem5 35163 cvmsss2 35242 elrn3 35724 rankeq1o 36135 fin2so 37567 heicant 37615 scottn0f 38130 psspwb 42221 fnwe2lem2 43008 sqrtcval 43603 |
Copyright terms: Public domain | W3C validator |