| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2978 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2933 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necom 2985 neeq1i 2996 neeq2i 2997 neeq12i 2998 rnsnn0 6197 onoviun 8357 onnseq 8358 intrnfi 9428 wdomtr 9589 noinfep 9674 wemapwe 9711 scott0s 9902 cplem1 9903 karden 9909 acndom2 10068 dfac5lem3 10139 fin23lem31 10357 fin23lem40 10365 isf34lem5 10392 isf34lem7 10393 isf34lem6 10394 axrrecex 11177 negne0bi 11556 rpnnen1lem4 12996 rpnnen1lem5 12997 fseqsupcl 13995 limsupgre 15497 isercolllem3 15683 rpnnen2lem12 16243 ruclem11 16258 3dvds 16350 prmreclem6 16941 0ram 17040 0ram2 17041 0ramcl 17043 gsumval2 18664 ghmrn 19212 gexex 19834 gsumval3 19888 subdrgint 20763 iinopn 22840 cnconn 23360 1stcfb 23383 qtopeu 23654 fbasrn 23822 alexsublem 23982 evth 24909 minveclem1 25376 minveclem3b 25380 ovollb2 25442 ovolunlem1a 25449 ovolunlem1 25450 ovoliunlem1 25455 ovoliun2 25459 ioombl1lem4 25514 uniioombllem1 25534 uniioombllem2 25536 uniioombllem6 25541 mbfsup 25617 mbfinf 25618 mbflimsup 25619 itg1climres 25667 itg2monolem1 25703 itg2mono 25706 itg2i1fseq2 25709 sincos4thpi 26474 nosepnelem 27643 axlowdimlem13 28933 eulerpath 30222 siii 30834 minvecolem1 30855 bcsiALT 31160 h1de2bi 31535 h1de2ctlem 31536 nmlnopgt0i 31978 wrdpmtrlast 33104 dimval 33640 dimvalfi 33641 rge0scvg 33980 umgracycusgr 35176 cusgracyclt3v 35178 erdszelem5 35217 cvmsss2 35296 elrn3 35779 rankeq1o 36189 fin2so 37631 heicant 37679 scottn0f 38194 psspwb 42279 fnwe2lem2 43075 sqrtcval 43665 |
| Copyright terms: Public domain | W3C validator |