| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2975 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2930 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necom 2982 neeq1i 2993 neeq2i 2994 neeq12i 2995 rnsnn0 6160 onoviun 8269 onnseq 8270 intrnfi 9307 wdomtr 9468 noinfep 9557 wemapwe 9594 scott0s 9788 cplem1 9789 karden 9795 acndom2 9952 dfac5lem3 10023 fin23lem31 10241 fin23lem40 10249 isf34lem5 10276 isf34lem7 10277 isf34lem6 10278 axrrecex 11061 negne0bi 11441 rpnnen1lem4 12880 rpnnen1lem5 12881 fseqsupcl 13886 limsupgre 15390 isercolllem3 15576 rpnnen2lem12 16136 ruclem11 16151 3dvds 16244 prmreclem6 16835 0ram 16934 0ram2 16935 0ramcl 16937 gsumval2 18596 ghmrn 19143 gexex 19767 gsumval3 19821 subdrgint 20720 iinopn 22818 cnconn 23338 1stcfb 23361 qtopeu 23632 fbasrn 23800 alexsublem 23960 evth 24886 minveclem1 25352 minveclem3b 25356 ovollb2 25418 ovolunlem1a 25425 ovolunlem1 25426 ovoliunlem1 25431 ovoliun2 25435 ioombl1lem4 25490 uniioombllem1 25510 uniioombllem2 25512 uniioombllem6 25517 mbfsup 25593 mbfinf 25594 mbflimsup 25595 itg1climres 25643 itg2monolem1 25679 itg2mono 25682 itg2i1fseq2 25685 sincos4thpi 26450 nosepnelem 27619 axlowdimlem13 28934 eulerpath 30223 siii 30835 minvecolem1 30856 bcsiALT 31161 h1de2bi 31536 h1de2ctlem 31537 nmlnopgt0i 31979 wrdpmtrlast 33069 dimval 33634 dimvalfi 33635 rge0scvg 33983 umgracycusgr 35219 cusgracyclt3v 35221 erdszelem5 35260 cvmsss2 35339 elrn3 35827 rankeq1o 36236 fin2so 37668 heicant 37716 scottn0f 38231 psspwb 42347 fnwe2lem2 43169 sqrtcval 43759 |
| Copyright terms: Public domain | W3C validator |