Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version |
Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
2 | 1 | necon3abii 2989 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
3 | df-ne 2943 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necom 2996 neeq1i 3007 neeq2i 3008 neeq12i 3009 rnsnn0 6100 onoviun 8145 onnseq 8146 intrnfi 9105 wdomtr 9264 noinfep 9348 wemapwe 9385 scott0s 9577 cplem1 9578 karden 9584 acndom2 9741 dfac5lem3 9812 fin23lem31 10030 fin23lem40 10038 isf34lem5 10065 isf34lem7 10066 isf34lem6 10067 axrrecex 10850 negne0bi 11224 rpnnen1lem4 12649 rpnnen1lem5 12650 fseqsupcl 13625 limsupgre 15118 isercolllem3 15306 rpnnen2lem12 15862 ruclem11 15877 3dvds 15968 prmreclem6 16550 0ram 16649 0ram2 16650 0ramcl 16652 gsumval2 18285 ghmrn 18762 gexex 19369 gsumval3 19423 subdrgint 19986 iinopn 21959 cnconn 22481 1stcfb 22504 qtopeu 22775 fbasrn 22943 alexsublem 23103 evth 24028 minveclem1 24493 minveclem3b 24497 ovollb2 24558 ovolunlem1a 24565 ovolunlem1 24566 ovoliunlem1 24571 ovoliun2 24575 ioombl1lem4 24630 uniioombllem1 24650 uniioombllem2 24652 uniioombllem6 24657 mbfsup 24733 mbfinf 24734 mbflimsup 24735 itg1climres 24784 itg2monolem1 24820 itg2mono 24823 itg2i1fseq2 24826 sincos4thpi 25575 axlowdimlem13 27225 eulerpath 28506 siii 29116 minvecolem1 29137 bcsiALT 29442 h1de2bi 29817 h1de2ctlem 29818 nmlnopgt0i 30260 dimval 31588 dimvalfi 31589 rge0scvg 31801 umgracycusgr 33016 cusgracyclt3v 33018 erdszelem5 33057 cvmsss2 33136 elrn3 33635 nosepnelem 33809 rankeq1o 34400 fin2so 35691 heicant 35739 scottn0f 36255 psspwb 40129 fnwe2lem2 40792 sqrtcval 41138 |
Copyright terms: Public domain | W3C validator |