Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version |
Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
2 | 1 | necon3abii 2990 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
3 | df-ne 2944 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necom 2997 neeq1i 3008 neeq2i 3009 neeq12i 3010 rnsnn0 6111 onoviun 8174 onnseq 8175 intrnfi 9175 wdomtr 9334 noinfep 9418 wemapwe 9455 scott0s 9646 cplem1 9647 karden 9653 acndom2 9810 dfac5lem3 9881 fin23lem31 10099 fin23lem40 10107 isf34lem5 10134 isf34lem7 10135 isf34lem6 10136 axrrecex 10919 negne0bi 11294 rpnnen1lem4 12720 rpnnen1lem5 12721 fseqsupcl 13697 limsupgre 15190 isercolllem3 15378 rpnnen2lem12 15934 ruclem11 15949 3dvds 16040 prmreclem6 16622 0ram 16721 0ram2 16722 0ramcl 16724 gsumval2 18370 ghmrn 18847 gexex 19454 gsumval3 19508 subdrgint 20071 iinopn 22051 cnconn 22573 1stcfb 22596 qtopeu 22867 fbasrn 23035 alexsublem 23195 evth 24122 minveclem1 24588 minveclem3b 24592 ovollb2 24653 ovolunlem1a 24660 ovolunlem1 24661 ovoliunlem1 24666 ovoliun2 24670 ioombl1lem4 24725 uniioombllem1 24745 uniioombllem2 24747 uniioombllem6 24752 mbfsup 24828 mbfinf 24829 mbflimsup 24830 itg1climres 24879 itg2monolem1 24915 itg2mono 24918 itg2i1fseq2 24921 sincos4thpi 25670 axlowdimlem13 27322 eulerpath 28605 siii 29215 minvecolem1 29236 bcsiALT 29541 h1de2bi 29916 h1de2ctlem 29917 nmlnopgt0i 30359 dimval 31686 dimvalfi 31687 rge0scvg 31899 umgracycusgr 33116 cusgracyclt3v 33118 erdszelem5 33157 cvmsss2 33236 elrn3 33729 nosepnelem 33882 rankeq1o 34473 fin2so 35764 heicant 35812 scottn0f 36328 psspwb 40203 fnwe2lem2 40876 sqrtcval 41249 |
Copyright terms: Public domain | W3C validator |