| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2972 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2927 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necom 2979 neeq1i 2990 neeq2i 2991 neeq12i 2992 rnsnn0 6184 onoviun 8315 onnseq 8316 intrnfi 9374 wdomtr 9535 noinfep 9620 wemapwe 9657 scott0s 9848 cplem1 9849 karden 9855 acndom2 10014 dfac5lem3 10085 fin23lem31 10303 fin23lem40 10311 isf34lem5 10338 isf34lem7 10339 isf34lem6 10340 axrrecex 11123 negne0bi 11502 rpnnen1lem4 12946 rpnnen1lem5 12947 fseqsupcl 13949 limsupgre 15454 isercolllem3 15640 rpnnen2lem12 16200 ruclem11 16215 3dvds 16308 prmreclem6 16899 0ram 16998 0ram2 16999 0ramcl 17001 gsumval2 18620 ghmrn 19168 gexex 19790 gsumval3 19844 subdrgint 20719 iinopn 22796 cnconn 23316 1stcfb 23339 qtopeu 23610 fbasrn 23778 alexsublem 23938 evth 24865 minveclem1 25331 minveclem3b 25335 ovollb2 25397 ovolunlem1a 25404 ovolunlem1 25405 ovoliunlem1 25410 ovoliun2 25414 ioombl1lem4 25469 uniioombllem1 25489 uniioombllem2 25491 uniioombllem6 25496 mbfsup 25572 mbfinf 25573 mbflimsup 25574 itg1climres 25622 itg2monolem1 25658 itg2mono 25661 itg2i1fseq2 25664 sincos4thpi 26429 nosepnelem 27598 axlowdimlem13 28888 eulerpath 30177 siii 30789 minvecolem1 30810 bcsiALT 31115 h1de2bi 31490 h1de2ctlem 31491 nmlnopgt0i 31933 wrdpmtrlast 33057 dimval 33603 dimvalfi 33604 rge0scvg 33946 umgracycusgr 35148 cusgracyclt3v 35150 erdszelem5 35189 cvmsss2 35268 elrn3 35756 rankeq1o 36166 fin2so 37608 heicant 37656 scottn0f 38171 psspwb 42223 fnwe2lem2 43047 sqrtcval 43637 |
| Copyright terms: Public domain | W3C validator |