| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2926 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necom 2978 neeq1i 2989 neeq2i 2990 neeq12i 2991 rnsnn0 6181 onoviun 8312 onnseq 8313 intrnfi 9367 wdomtr 9528 noinfep 9613 wemapwe 9650 scott0s 9841 cplem1 9842 karden 9848 acndom2 10007 dfac5lem3 10078 fin23lem31 10296 fin23lem40 10304 isf34lem5 10331 isf34lem7 10332 isf34lem6 10333 axrrecex 11116 negne0bi 11495 rpnnen1lem4 12939 rpnnen1lem5 12940 fseqsupcl 13942 limsupgre 15447 isercolllem3 15633 rpnnen2lem12 16193 ruclem11 16208 3dvds 16301 prmreclem6 16892 0ram 16991 0ram2 16992 0ramcl 16994 gsumval2 18613 ghmrn 19161 gexex 19783 gsumval3 19837 subdrgint 20712 iinopn 22789 cnconn 23309 1stcfb 23332 qtopeu 23603 fbasrn 23771 alexsublem 23931 evth 24858 minveclem1 25324 minveclem3b 25328 ovollb2 25390 ovolunlem1a 25397 ovolunlem1 25398 ovoliunlem1 25403 ovoliun2 25407 ioombl1lem4 25462 uniioombllem1 25482 uniioombllem2 25484 uniioombllem6 25489 mbfsup 25565 mbfinf 25566 mbflimsup 25567 itg1climres 25615 itg2monolem1 25651 itg2mono 25654 itg2i1fseq2 25657 sincos4thpi 26422 nosepnelem 27591 axlowdimlem13 28881 eulerpath 30170 siii 30782 minvecolem1 30803 bcsiALT 31108 h1de2bi 31483 h1de2ctlem 31484 nmlnopgt0i 31926 wrdpmtrlast 33050 dimval 33596 dimvalfi 33597 rge0scvg 33939 umgracycusgr 35141 cusgracyclt3v 35143 erdszelem5 35182 cvmsss2 35261 elrn3 35749 rankeq1o 36159 fin2so 37601 heicant 37649 scottn0f 38164 psspwb 42216 fnwe2lem2 43040 sqrtcval 43630 |
| Copyright terms: Public domain | W3C validator |