| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bii | Structured version Visualization version GIF version | ||
| Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
| Ref | Expression |
|---|---|
| necon3bii.1 | ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3bii | ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bii.1 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝐶 = 𝐷) | |
| 2 | 1 | necon3abii 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐷) |
| 3 | df-ne 2926 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necom 2978 neeq1i 2989 neeq2i 2990 neeq12i 2991 rnsnn0 6161 onoviun 8273 onnseq 8274 intrnfi 9325 wdomtr 9486 noinfep 9575 wemapwe 9612 scott0s 9803 cplem1 9804 karden 9810 acndom2 9967 dfac5lem3 10038 fin23lem31 10256 fin23lem40 10264 isf34lem5 10291 isf34lem7 10292 isf34lem6 10293 axrrecex 11076 negne0bi 11455 rpnnen1lem4 12899 rpnnen1lem5 12900 fseqsupcl 13902 limsupgre 15406 isercolllem3 15592 rpnnen2lem12 16152 ruclem11 16167 3dvds 16260 prmreclem6 16851 0ram 16950 0ram2 16951 0ramcl 16953 gsumval2 18578 ghmrn 19126 gexex 19750 gsumval3 19804 subdrgint 20706 iinopn 22805 cnconn 23325 1stcfb 23348 qtopeu 23619 fbasrn 23787 alexsublem 23947 evth 24874 minveclem1 25340 minveclem3b 25344 ovollb2 25406 ovolunlem1a 25413 ovolunlem1 25414 ovoliunlem1 25419 ovoliun2 25423 ioombl1lem4 25478 uniioombllem1 25498 uniioombllem2 25500 uniioombllem6 25505 mbfsup 25581 mbfinf 25582 mbflimsup 25583 itg1climres 25631 itg2monolem1 25667 itg2mono 25670 itg2i1fseq2 25673 sincos4thpi 26438 nosepnelem 27607 axlowdimlem13 28917 eulerpath 30203 siii 30815 minvecolem1 30836 bcsiALT 31141 h1de2bi 31516 h1de2ctlem 31517 nmlnopgt0i 31959 wrdpmtrlast 33048 dimval 33575 dimvalfi 33576 rge0scvg 33918 umgracycusgr 35129 cusgracyclt3v 35131 erdszelem5 35170 cvmsss2 35249 elrn3 35737 rankeq1o 36147 fin2so 37589 heicant 37637 scottn0f 38152 psspwb 42204 fnwe2lem2 43027 sqrtcval 43617 |
| Copyright terms: Public domain | W3C validator |