Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4abid | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon4abid.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4abid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | necon4abid.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) | |
3 | 2 | necon1bbid 2982 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 ↔ 𝐴 = 𝐵)) |
4 | 1, 3 | bitr2id 283 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon4bbid 2984 necon2bbid 2986 birthdaylem3 26008 lgsprme0 26392 nmounbi 29039 |
Copyright terms: Public domain | W3C validator |