|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > necon4abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| necon4abid.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) | 
| Ref | Expression | 
|---|---|
| necon4abid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon4abid.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) | |
| 3 | 2 | necon1bbid 2980 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 ↔ 𝐴 = 𝐵)) | 
| 4 | 1, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2940 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-ne 2941 | 
| This theorem is referenced by: necon4bbid 2982 necon2bbid 2984 birthdaylem3 26996 lgsprme0 27383 nmounbi 30795 disjecxrn 38390 | 
| Copyright terms: Public domain | W3C validator |