MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2984
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 314 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 285 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2981 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2941
This theorem is referenced by:  necon4bid  2986  omwordi  8570  omass  8579  nnmwordi  8634  sdom1OLD  9242  pceq0  16803  f1otrspeq  19314  pmtrfinv  19328  symggen  19337  psgnunilem1  19360  mdetralt  22109  mdetunilem7  22119  ftalem5  26578  fsumvma  26713  dchrelbas4  26743  nosepssdm  27186  fvdifsupp  31902  creq0  31955  fsumcvg4  32925  lkreqN  38035  flt4lem5elem  41394
  Copyright terms: Public domain W3C validator