MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2969
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 315 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 286 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2966 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  necon4bid  2971  fvdifsupp  8153  omwordi  8538  omass  8547  nnmwordi  8602  sdom1OLD  9197  pceq0  16849  f1otrspeq  19384  pmtrfinv  19398  symggen  19407  psgnunilem1  19430  mdetralt  22502  mdetunilem7  22512  ftalem5  26994  fsumvma  27131  dchrelbas4  27161  nosepssdm  27605  creq0  32666  fsumcvg4  33947  lkreqN  39170  flt4lem5elem  42646
  Copyright terms: Public domain W3C validator