| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
| 2 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 3 | 1, 2 | bitr3di 286 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 3 | necon4abid 2973 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon4bid 2978 fvdifsupp 8175 omwordi 8588 omass 8597 nnmwordi 8652 sdom1OLD 9256 pceq0 16896 f1otrspeq 19433 pmtrfinv 19447 symggen 19456 psgnunilem1 19479 mdetralt 22551 mdetunilem7 22561 ftalem5 27044 fsumvma 27181 dchrelbas4 27211 nosepssdm 27655 creq0 32718 fsumcvg4 33986 lkreqN 39193 flt4lem5elem 42641 |
| Copyright terms: Public domain | W3C validator |