MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2986
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 314 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 285 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2983 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  necon4bid  2988  omwordi  8364  omass  8373  nnmwordi  8428  sdom1  8952  pceq0  16500  f1otrspeq  18970  pmtrfinv  18984  symggen  18993  psgnunilem1  19016  mdetralt  21665  mdetunilem7  21675  ftalem5  26131  fsumvma  26266  dchrelbas4  26296  fvdifsupp  30920  creq0  30972  fsumcvg4  31802  nosepssdm  33816  lkreqN  37111  flt4lem5elem  40404
  Copyright terms: Public domain W3C validator