MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2983
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 314 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 285 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2980 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1540  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2940
This theorem is referenced by:  necon4bid  2985  omwordi  8574  omass  8583  nnmwordi  8638  sdom1OLD  9246  pceq0  16809  f1otrspeq  19357  pmtrfinv  19371  symggen  19380  psgnunilem1  19403  mdetralt  22331  mdetunilem7  22341  ftalem5  26814  fsumvma  26949  dchrelbas4  26979  nosepssdm  27422  fvdifsupp  32171  creq0  32224  fsumcvg4  33225  lkreqN  38344  flt4lem5elem  41696
  Copyright terms: Public domain W3C validator