| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
| 2 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 3 | 1, 2 | bitr3di 286 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 3 | necon4abid 2965 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4bid 2970 fvdifsupp 8150 omwordi 8535 omass 8544 nnmwordi 8599 sdom1OLD 9190 pceq0 16842 f1otrspeq 19377 pmtrfinv 19391 symggen 19400 psgnunilem1 19423 mdetralt 22495 mdetunilem7 22505 ftalem5 26987 fsumvma 27124 dchrelbas4 27154 nosepssdm 27598 creq0 32659 fsumcvg4 33940 lkreqN 39163 flt4lem5elem 42639 |
| Copyright terms: Public domain | W3C validator |