MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2972
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 315 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 286 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2969 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2930
This theorem is referenced by:  necon4bid  2974  fvdifsupp  8109  omwordi  8494  omass  8503  nnmwordi  8558  pceq0  16787  f1otrspeq  19363  pmtrfinv  19377  symggen  19386  psgnunilem1  19409  mdetralt  22526  mdetunilem7  22536  ftalem5  27017  fsumvma  27154  dchrelbas4  27184  nosepssdm  27628  creq0  32725  fsumcvg4  33986  lkreqN  39292  flt4lem5elem  42772
  Copyright terms: Public domain W3C validator