Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
2 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
3 | 1, 2 | bitr3di 286 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
4 | 3 | necon4abid 2984 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon4bid 2989 omwordi 8402 omass 8411 nnmwordi 8466 sdom1 9022 pceq0 16572 f1otrspeq 19055 pmtrfinv 19069 symggen 19078 psgnunilem1 19101 mdetralt 21757 mdetunilem7 21767 ftalem5 26226 fsumvma 26361 dchrelbas4 26391 fvdifsupp 31018 creq0 31070 fsumcvg4 31900 nosepssdm 33889 lkreqN 37184 flt4lem5elem 40488 |
Copyright terms: Public domain | W3C validator |