| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Ref | Expression |
|---|---|
| necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
| 2 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 3 | 1, 2 | bitr3di 286 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
| 4 | 3 | necon4abid 2965 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4bid 2970 fvdifsupp 8111 omwordi 8496 omass 8505 nnmwordi 8560 pceq0 16801 f1otrspeq 19344 pmtrfinv 19358 symggen 19367 psgnunilem1 19390 mdetralt 22511 mdetunilem7 22521 ftalem5 27003 fsumvma 27140 dchrelbas4 27170 nosepssdm 27614 creq0 32692 fsumcvg4 33919 lkreqN 39151 flt4lem5elem 42627 |
| Copyright terms: Public domain | W3C validator |