MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbid Structured version   Visualization version   GIF version

Theorem necon2bbid 2982
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon2bbid.1 (𝜑 → (𝜓𝐴𝐵))
Assertion
Ref Expression
necon2bbid (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))

Proof of Theorem necon2bbid
StepHypRef Expression
1 necon2bbid.1 . . 3 (𝜑 → (𝜓𝐴𝐵))
2 notnotb 314 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
31, 2bitr3di 285 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ ¬ 𝜓))
43necon4abid 2979 1 (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2939
This theorem is referenced by:  necon4bid  2984  omwordi  8573  omass  8582  nnmwordi  8637  sdom1OLD  9245  pceq0  16808  f1otrspeq  19356  pmtrfinv  19370  symggen  19379  psgnunilem1  19402  mdetralt  22330  mdetunilem7  22340  ftalem5  26817  fsumvma  26952  dchrelbas4  26982  nosepssdm  27425  fvdifsupp  32174  creq0  32227  fsumcvg4  33228  lkreqN  38343  flt4lem5elem  41695
  Copyright terms: Public domain W3C validator