![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2bbid | Structured version Visualization version GIF version |
Description: Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
Ref | Expression |
---|---|
necon2bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) |
Ref | Expression |
---|---|
necon2bbid | ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝐴 ≠ 𝐵)) | |
2 | notnotb 314 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
3 | 1, 2 | bitr3di 285 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ ¬ 𝜓)) |
4 | 3 | necon4abid 2980 | 1 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ≠ wne 2939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2940 |
This theorem is referenced by: necon4bid 2985 omwordi 8574 omass 8583 nnmwordi 8638 sdom1OLD 9246 pceq0 16809 f1otrspeq 19357 pmtrfinv 19371 symggen 19380 psgnunilem1 19403 mdetralt 22331 mdetunilem7 22341 ftalem5 26814 fsumvma 26949 dchrelbas4 26979 nosepssdm 27422 fvdifsupp 32171 creq0 32224 fsumcvg4 33225 lkreqN 38344 flt4lem5elem 41696 |
Copyright terms: Public domain | W3C validator |