MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   GIF version

Theorem birthdaylem3 26897
Description: For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
2 abn0 4344 . . . . . . . . . . . 12 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
3 ovex 7402 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
43brdom 8909 . . . . . . . . . . . 12 ((1...𝐾) ≼ (1...𝑁) ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
52, 4bitr4i 278 . . . . . . . . . . 11 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ (1...𝐾) ≼ (1...𝑁))
6 hashfz1 14289 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
7 nnnn0 12427 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
8 hashfz1 14289 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
97, 8syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
106, 9breqan12d 5118 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ 𝐾𝑁))
11 fzfid 13916 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝐾) ∈ Fin)
12 fzfid 13916 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝑁) ∈ Fin)
13 hashdom 14322 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
15 nn0re 12429 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
16 nnre 12171 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
17 lenlt 11230 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1815, 16, 17syl2an 596 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1910, 14, 183bitr3d 309 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((1...𝐾) ≼ (1...𝑁) ↔ ¬ 𝑁 < 𝐾))
205, 19bitrid 283 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ¬ 𝑁 < 𝐾))
2120necon4abid 2965 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅ ↔ 𝑁 < 𝐾))
2221biimpar 477 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅)
231, 22eqtrid 2776 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑇 = ∅)
2423fveq2d 6844 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = (♯‘∅))
25 hash0 14310 . . . . . 6 (♯‘∅) = 0
2624, 25eqtrdi 2780 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = 0)
2726oveq1d 7384 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = (0 / (♯‘𝑆)))
28 birthday.s . . . . . . . . . 10 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
2928, 1birthdaylem1 26895 . . . . . . . . 9 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
3029simp3i 1141 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
3130ad2antlr 727 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑆 ≠ ∅)
3229simp2i 1140 . . . . . . . 8 𝑆 ∈ Fin
33 hashnncl 14309 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
3432, 33ax-mp 5 . . . . . . 7 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
3531, 34sylibr 234 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℕ)
3635nncnd 12180 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℂ)
3735nnne0d 12214 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ≠ 0)
3836, 37div0d 11935 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (0 / (♯‘𝑆)) = 0)
3927, 38eqtrd 2764 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = 0)
4015adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
4140resqcld 14068 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾↑2) ∈ ℝ)
4241, 40resubcld 11584 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝐾↑2) − 𝐾) ∈ ℝ)
4342rehalfcld 12407 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (((𝐾↑2) − 𝐾) / 2) ∈ ℝ)
44 nndivre 12205 . . . . . . . 8 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4543, 44sylancom 588 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4645renegcld 11583 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4746adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4847rpefcld 16050 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ+)
4948rpge0d 12977 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 0 ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
5039, 49eqbrtrd 5124 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
51 simplr 768 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
52 simpr 484 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾𝑁)
53 simpll 766 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℕ0)
54 nn0uz 12813 . . . . . . 7 0 = (ℤ‘0)
5553, 54eleqtrdi 2838 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (ℤ‘0))
56 nnz 12528 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5756ad2antlr 727 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℤ)
58 elfz5 13455 . . . . . 6 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
5955, 57, 58syl2anc 584 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
6052, 59mpbird 257 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (0...𝑁))
6128, 1birthdaylem2 26896 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
6251, 60, 61syl2anc 584 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
63 fzfid 13916 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (0...(𝐾 − 1)) ∈ Fin)
64 elfznn0 13559 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
6564adantl 481 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
6665nn0red 12482 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℝ)
6753nn0red 12482 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℝ)
68 peano2rem 11467 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) ∈ ℝ)
7069adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
7151adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
7271nnred 12179 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℝ)
73 elfzle2 13467 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
7473adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
7551nnred 12179 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℝ)
7667ltm1d 12093 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝐾)
7769, 67, 75, 76, 52ltletrd 11312 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝑁)
7877adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) < 𝑁)
7966, 70, 72, 74, 78lelttrd 11310 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < 𝑁)
8071nncnd 12180 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
8180mulridd 11169 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 · 1) = 𝑁)
8279, 81breqtrrd 5130 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < (𝑁 · 1))
83 1red 11153 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 1 ∈ ℝ)
8471nngt0d 12213 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < 𝑁)
85 ltdivmul 12036 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8666, 83, 72, 84, 85syl112anc 1376 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8782, 86mpbird 257 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) < 1)
8866, 71nndivred 12218 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℝ)
89 1re 11152 . . . . . . . . 9 1 ∈ ℝ
90 difrp 12969 . . . . . . . . 9 (((𝑘 / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9188, 89, 90sylancl 586 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9287, 91mpbid 232 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ∈ ℝ+)
9392relogcld 26566 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
9488renegcld 11583 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → -(𝑘 / 𝑁) ∈ ℝ)
95 elfzle1 13466 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 0 ≤ 𝑘)
9695adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ 𝑘)
97 divge0 12030 . . . . . . . . . . 11 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑘 / 𝑁))
9866, 96, 72, 84, 97syl22anc 838 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ (𝑘 / 𝑁))
9988, 98, 87eflegeo 16066 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))))
10088reefcld 16031 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ∈ ℝ)
101 efgt0 16048 . . . . . . . . . . 11 ((𝑘 / 𝑁) ∈ ℝ → 0 < (exp‘(𝑘 / 𝑁)))
10288, 101syl 17 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < (exp‘(𝑘 / 𝑁)))
10392rpregt0d 12979 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁))))
104 lerec2 12049 . . . . . . . . . 10 ((((exp‘(𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (exp‘(𝑘 / 𝑁))) ∧ ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁)))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
105100, 102, 103, 104syl21anc 837 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
10699, 105mpbid 232 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁))))
10792reeflogd 26567 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) = (1 − (𝑘 / 𝑁)))
10888recnd 11180 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℂ)
109 efneg 16043 . . . . . . . . 9 ((𝑘 / 𝑁) ∈ ℂ → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
110108, 109syl 17 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
111106, 107, 1103brtr4d 5134 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁)))
112 efle 16063 . . . . . . . 8 (((log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -(𝑘 / 𝑁) ∈ ℝ) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
11393, 94, 112syl2anc 584 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
114111, 113mpbird 257 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁))
11563, 93, 94, 114fsumle 15742 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁))
11663, 108fsumneg 15730 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
11751nncnd 12180 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℂ)
11866recnd 11180 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
119 nnne0 12198 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
120119ad2antlr 727 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ≠ 0)
12163, 117, 118, 120fsumdivc 15729 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
122 arisum2 15804 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
12353, 122syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
124123oveq1d 7384 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
125121, 124eqtr3d 2766 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
126125negeqd 11393 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
127116, 126eqtrd 2764 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
128115, 127breqtrd 5128 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
12963, 93fsumrecl 15677 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
13046adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
131 efle 16063 . . . . 5 ((Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
132129, 130, 131syl2anc 584 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
133128, 132mpbid 232 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13462, 133eqbrtrd 5124 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13516adantl 481 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
13650, 134, 135, 40ltlecasei 11260 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wss 3911  c0 4292   class class class wbr 5102  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  cdom 8893  Fincfn 8895  cc 11044  cr 11045  0cc0 11046  1c1 11047   · cmul 11051   < clt 11186  cle 11187  cmin 11383  -cneg 11384   / cdiv 11813  cn 12164  2c2 12219  0cn0 12420  cz 12507  cuz 12771  +crp 12929  ...cfz 13446  cexp 14004  chash 14273  Σcsu 15629  expce 16004  logclog 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-xnn0 12494  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802  df-log 26499
This theorem is referenced by:  birthday  26898
  Copyright terms: Public domain W3C validator