MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   GIF version

Theorem birthdaylem3 27014
Description: For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
2 abn0 4408 . . . . . . . . . . . 12 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
3 ovex 7481 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
43brdom 9020 . . . . . . . . . . . 12 ((1...𝐾) ≼ (1...𝑁) ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
52, 4bitr4i 278 . . . . . . . . . . 11 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ (1...𝐾) ≼ (1...𝑁))
6 hashfz1 14395 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
7 nnnn0 12560 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
8 hashfz1 14395 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
97, 8syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
106, 9breqan12d 5182 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ 𝐾𝑁))
11 fzfid 14024 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝐾) ∈ Fin)
12 fzfid 14024 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝑁) ∈ Fin)
13 hashdom 14428 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
1411, 12, 13syl2anc 583 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
15 nn0re 12562 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
16 nnre 12300 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
17 lenlt 11368 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1815, 16, 17syl2an 595 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1910, 14, 183bitr3d 309 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((1...𝐾) ≼ (1...𝑁) ↔ ¬ 𝑁 < 𝐾))
205, 19bitrid 283 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ¬ 𝑁 < 𝐾))
2120necon4abid 2987 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅ ↔ 𝑁 < 𝐾))
2221biimpar 477 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅)
231, 22eqtrid 2792 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑇 = ∅)
2423fveq2d 6924 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = (♯‘∅))
25 hash0 14416 . . . . . 6 (♯‘∅) = 0
2624, 25eqtrdi 2796 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = 0)
2726oveq1d 7463 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = (0 / (♯‘𝑆)))
28 birthday.s . . . . . . . . . 10 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
2928, 1birthdaylem1 27012 . . . . . . . . 9 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
3029simp3i 1141 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
3130ad2antlr 726 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑆 ≠ ∅)
3229simp2i 1140 . . . . . . . 8 𝑆 ∈ Fin
33 hashnncl 14415 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
3432, 33ax-mp 5 . . . . . . 7 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
3531, 34sylibr 234 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℕ)
3635nncnd 12309 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℂ)
3735nnne0d 12343 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ≠ 0)
3836, 37div0d 12069 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (0 / (♯‘𝑆)) = 0)
3927, 38eqtrd 2780 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = 0)
4015adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
4140resqcld 14175 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾↑2) ∈ ℝ)
4241, 40resubcld 11718 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝐾↑2) − 𝐾) ∈ ℝ)
4342rehalfcld 12540 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (((𝐾↑2) − 𝐾) / 2) ∈ ℝ)
44 nndivre 12334 . . . . . . . 8 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4543, 44sylancom 587 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4645renegcld 11717 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4746adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4847rpefcld 16153 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ+)
4948rpge0d 13103 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 0 ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
5039, 49eqbrtrd 5188 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
51 simplr 768 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
52 simpr 484 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾𝑁)
53 simpll 766 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℕ0)
54 nn0uz 12945 . . . . . . 7 0 = (ℤ‘0)
5553, 54eleqtrdi 2854 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (ℤ‘0))
56 nnz 12660 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5756ad2antlr 726 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℤ)
58 elfz5 13576 . . . . . 6 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
5955, 57, 58syl2anc 583 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
6052, 59mpbird 257 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (0...𝑁))
6128, 1birthdaylem2 27013 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
6251, 60, 61syl2anc 583 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
63 fzfid 14024 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (0...(𝐾 − 1)) ∈ Fin)
64 elfznn0 13677 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
6564adantl 481 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
6665nn0red 12614 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℝ)
6753nn0red 12614 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℝ)
68 peano2rem 11603 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) ∈ ℝ)
7069adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
7151adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
7271nnred 12308 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℝ)
73 elfzle2 13588 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
7473adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
7551nnred 12308 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℝ)
7667ltm1d 12227 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝐾)
7769, 67, 75, 76, 52ltletrd 11450 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝑁)
7877adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) < 𝑁)
7966, 70, 72, 74, 78lelttrd 11448 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < 𝑁)
8071nncnd 12309 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
8180mulridd 11307 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 · 1) = 𝑁)
8279, 81breqtrrd 5194 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < (𝑁 · 1))
83 1red 11291 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 1 ∈ ℝ)
8471nngt0d 12342 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < 𝑁)
85 ltdivmul 12170 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8666, 83, 72, 84, 85syl112anc 1374 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8782, 86mpbird 257 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) < 1)
8866, 71nndivred 12347 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℝ)
89 1re 11290 . . . . . . . . 9 1 ∈ ℝ
90 difrp 13095 . . . . . . . . 9 (((𝑘 / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9188, 89, 90sylancl 585 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9287, 91mpbid 232 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ∈ ℝ+)
9392relogcld 26683 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
9488renegcld 11717 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → -(𝑘 / 𝑁) ∈ ℝ)
95 elfzle1 13587 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 0 ≤ 𝑘)
9695adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ 𝑘)
97 divge0 12164 . . . . . . . . . . 11 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑘 / 𝑁))
9866, 96, 72, 84, 97syl22anc 838 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ (𝑘 / 𝑁))
9988, 98, 87eflegeo 16169 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))))
10088reefcld 16136 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ∈ ℝ)
101 efgt0 16151 . . . . . . . . . . 11 ((𝑘 / 𝑁) ∈ ℝ → 0 < (exp‘(𝑘 / 𝑁)))
10288, 101syl 17 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < (exp‘(𝑘 / 𝑁)))
10392rpregt0d 13105 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁))))
104 lerec2 12183 . . . . . . . . . 10 ((((exp‘(𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (exp‘(𝑘 / 𝑁))) ∧ ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁)))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
105100, 102, 103, 104syl21anc 837 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
10699, 105mpbid 232 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁))))
10792reeflogd 26684 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) = (1 − (𝑘 / 𝑁)))
10888recnd 11318 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℂ)
109 efneg 16146 . . . . . . . . 9 ((𝑘 / 𝑁) ∈ ℂ → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
110108, 109syl 17 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
111106, 107, 1103brtr4d 5198 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁)))
112 efle 16166 . . . . . . . 8 (((log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -(𝑘 / 𝑁) ∈ ℝ) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
11393, 94, 112syl2anc 583 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
114111, 113mpbird 257 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁))
11563, 93, 94, 114fsumle 15847 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁))
11663, 108fsumneg 15835 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
11751nncnd 12309 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℂ)
11866recnd 11318 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
119 nnne0 12327 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
120119ad2antlr 726 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ≠ 0)
12163, 117, 118, 120fsumdivc 15834 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
122 arisum2 15909 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
12353, 122syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
124123oveq1d 7463 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
125121, 124eqtr3d 2782 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
126125negeqd 11530 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
127116, 126eqtrd 2780 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
128115, 127breqtrd 5192 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
12963, 93fsumrecl 15782 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
13046adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
131 efle 16166 . . . . 5 ((Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
132129, 130, 131syl2anc 583 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
133128, 132mpbid 232 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13462, 133eqbrtrd 5188 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13516adantl 481 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
13650, 134, 135, 40ltlecasei 11398 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wss 3976  c0 4352   class class class wbr 5166  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  cdom 9001  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  cexp 14112  chash 14379  Σcsu 15734  expce 16109  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  birthday  27015
  Copyright terms: Public domain W3C validator