MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   GIF version

Theorem birthdaylem3 25213
Description: For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
2 abn0 4256 . . . . . . . . . . . 12 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
3 ovex 7048 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
43brdom 8369 . . . . . . . . . . . 12 ((1...𝐾) ≼ (1...𝑁) ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
52, 4bitr4i 279 . . . . . . . . . . 11 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ (1...𝐾) ≼ (1...𝑁))
6 hashfz1 13556 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
7 nnnn0 11752 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
8 hashfz1 13556 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
97, 8syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
106, 9breqan12d 4978 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ 𝐾𝑁))
11 fzfid 13191 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝐾) ∈ Fin)
12 fzfid 13191 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝑁) ∈ Fin)
13 hashdom 13588 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
15 nn0re 11754 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
16 nnre 11493 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
17 lenlt 10566 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1815, 16, 17syl2an 595 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1910, 14, 183bitr3d 310 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((1...𝐾) ≼ (1...𝑁) ↔ ¬ 𝑁 < 𝐾))
205, 19syl5bb 284 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ¬ 𝑁 < 𝐾))
2120necon4abid 3024 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅ ↔ 𝑁 < 𝐾))
2221biimpar 478 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅)
231, 22syl5eq 2843 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑇 = ∅)
2423fveq2d 6542 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = (♯‘∅))
25 hash0 13578 . . . . . 6 (♯‘∅) = 0
2624, 25syl6eq 2847 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = 0)
2726oveq1d 7031 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = (0 / (♯‘𝑆)))
28 birthday.s . . . . . . . . . 10 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
2928, 1birthdaylem1 25211 . . . . . . . . 9 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
3029simp3i 1134 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
3130ad2antlr 723 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑆 ≠ ∅)
3229simp2i 1133 . . . . . . . 8 𝑆 ∈ Fin
33 hashnncl 13577 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
3432, 33ax-mp 5 . . . . . . 7 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
3531, 34sylibr 235 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℕ)
3635nncnd 11502 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℂ)
3735nnne0d 11535 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ≠ 0)
3836, 37div0d 11263 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (0 / (♯‘𝑆)) = 0)
3927, 38eqtrd 2831 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = 0)
4015adantr 481 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
4140resqcld 13461 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾↑2) ∈ ℝ)
4241, 40resubcld 10916 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝐾↑2) − 𝐾) ∈ ℝ)
4342rehalfcld 11732 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (((𝐾↑2) − 𝐾) / 2) ∈ ℝ)
44 nndivre 11526 . . . . . . . 8 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4543, 44sylancom 588 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4645renegcld 10915 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4746adantr 481 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4847rpefcld 15291 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ+)
4948rpge0d 12285 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 0 ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
5039, 49eqbrtrd 4984 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
51 simplr 765 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
52 simpr 485 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾𝑁)
53 simpll 763 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℕ0)
54 nn0uz 12129 . . . . . . 7 0 = (ℤ‘0)
5553, 54syl6eleq 2893 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (ℤ‘0))
56 nnz 11853 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5756ad2antlr 723 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℤ)
58 elfz5 12750 . . . . . 6 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
5955, 57, 58syl2anc 584 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
6052, 59mpbird 258 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (0...𝑁))
6128, 1birthdaylem2 25212 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
6251, 60, 61syl2anc 584 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
63 fzfid 13191 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (0...(𝐾 − 1)) ∈ Fin)
64 elfznn0 12850 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
6564adantl 482 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
6665nn0red 11804 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℝ)
6753nn0red 11804 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℝ)
68 peano2rem 10801 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) ∈ ℝ)
7069adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
7151adantr 481 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
7271nnred 11501 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℝ)
73 elfzle2 12761 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
7473adantl 482 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
7551nnred 11501 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℝ)
7667ltm1d 11420 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝐾)
7769, 67, 75, 76, 52ltletrd 10647 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝑁)
7877adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) < 𝑁)
7966, 70, 72, 74, 78lelttrd 10645 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < 𝑁)
8071nncnd 11502 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
8180mulid1d 10504 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 · 1) = 𝑁)
8279, 81breqtrrd 4990 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < (𝑁 · 1))
83 1red 10488 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 1 ∈ ℝ)
8471nngt0d 11534 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < 𝑁)
85 ltdivmul 11363 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8666, 83, 72, 84, 85syl112anc 1367 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8782, 86mpbird 258 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) < 1)
8866, 71nndivred 11539 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℝ)
89 1re 10487 . . . . . . . . 9 1 ∈ ℝ
90 difrp 12277 . . . . . . . . 9 (((𝑘 / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9188, 89, 90sylancl 586 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9287, 91mpbid 233 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ∈ ℝ+)
9392relogcld 24887 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
9488renegcld 10915 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → -(𝑘 / 𝑁) ∈ ℝ)
95 elfzle1 12760 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 0 ≤ 𝑘)
9695adantl 482 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ 𝑘)
97 divge0 11357 . . . . . . . . . . 11 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑘 / 𝑁))
9866, 96, 72, 84, 97syl22anc 835 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ (𝑘 / 𝑁))
9988, 98, 87eflegeo 15307 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))))
10088reefcld 15274 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ∈ ℝ)
101 efgt0 15289 . . . . . . . . . . 11 ((𝑘 / 𝑁) ∈ ℝ → 0 < (exp‘(𝑘 / 𝑁)))
10288, 101syl 17 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < (exp‘(𝑘 / 𝑁)))
10392rpregt0d 12287 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁))))
104 lerec2 11376 . . . . . . . . . 10 ((((exp‘(𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (exp‘(𝑘 / 𝑁))) ∧ ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁)))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
105100, 102, 103, 104syl21anc 834 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
10699, 105mpbid 233 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁))))
10792reeflogd 24888 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) = (1 − (𝑘 / 𝑁)))
10888recnd 10515 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℂ)
109 efneg 15284 . . . . . . . . 9 ((𝑘 / 𝑁) ∈ ℂ → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
110108, 109syl 17 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
111106, 107, 1103brtr4d 4994 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁)))
112 efle 15304 . . . . . . . 8 (((log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -(𝑘 / 𝑁) ∈ ℝ) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
11393, 94, 112syl2anc 584 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
114111, 113mpbird 258 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁))
11563, 93, 94, 114fsumle 14987 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁))
11663, 108fsumneg 14975 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
11751nncnd 11502 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℂ)
11866recnd 10515 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
119 nnne0 11519 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
120119ad2antlr 723 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ≠ 0)
12163, 117, 118, 120fsumdivc 14974 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
122 arisum2 15049 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
12353, 122syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
124123oveq1d 7031 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
125121, 124eqtr3d 2833 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
126125negeqd 10727 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
127116, 126eqtrd 2831 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
128115, 127breqtrd 4988 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
12963, 93fsumrecl 14924 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
13046adantr 481 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
131 efle 15304 . . . . 5 ((Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
132129, 130, 131syl2anc 584 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
133128, 132mpbid 233 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13462, 133eqbrtrd 4984 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13516adantl 482 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
13650, 134, 135, 40ltlecasei 10595 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wne 2984  wss 3859  c0 4211   class class class wbr 4962  wf 6221  1-1wf1 6222  cfv 6225  (class class class)co 7016  cdom 8355  Fincfn 8357  cc 10381  cr 10382  0cc0 10383  1c1 10384   · cmul 10388   < clt 10521  cle 10522  cmin 10717  -cneg 10718   / cdiv 11145  cn 11486  2c2 11540  0cn0 11745  cz 11829  cuz 12093  +crp 12239  ...cfz 12742  cexp 13279  chash 13540  Σcsu 14876  expce 15248  logclog 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821
This theorem is referenced by:  birthday  25214
  Copyright terms: Public domain W3C validator