MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   GIF version

Theorem birthdaylem3 26103
Description: For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
2 abn0 4314 . . . . . . . . . . . 12 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
3 ovex 7308 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
43brdom 8750 . . . . . . . . . . . 12 ((1...𝐾) ≼ (1...𝑁) ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
52, 4bitr4i 277 . . . . . . . . . . 11 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ (1...𝐾) ≼ (1...𝑁))
6 hashfz1 14060 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
7 nnnn0 12240 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
8 hashfz1 14060 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
97, 8syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
106, 9breqan12d 5090 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ 𝐾𝑁))
11 fzfid 13693 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝐾) ∈ Fin)
12 fzfid 13693 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝑁) ∈ Fin)
13 hashdom 14094 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
1411, 12, 13syl2anc 584 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘(1...𝐾)) ≤ (♯‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
15 nn0re 12242 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
16 nnre 11980 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
17 lenlt 11053 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1815, 16, 17syl2an 596 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1910, 14, 183bitr3d 309 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((1...𝐾) ≼ (1...𝑁) ↔ ¬ 𝑁 < 𝐾))
205, 19bitrid 282 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ¬ 𝑁 < 𝐾))
2120necon4abid 2984 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅ ↔ 𝑁 < 𝐾))
2221biimpar 478 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅)
231, 22eqtrid 2790 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑇 = ∅)
2423fveq2d 6778 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = (♯‘∅))
25 hash0 14082 . . . . . 6 (♯‘∅) = 0
2624, 25eqtrdi 2794 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑇) = 0)
2726oveq1d 7290 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = (0 / (♯‘𝑆)))
28 birthday.s . . . . . . . . . 10 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
2928, 1birthdaylem1 26101 . . . . . . . . 9 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
3029simp3i 1140 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
3130ad2antlr 724 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑆 ≠ ∅)
3229simp2i 1139 . . . . . . . 8 𝑆 ∈ Fin
33 hashnncl 14081 . . . . . . . 8 (𝑆 ∈ Fin → ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
3432, 33ax-mp 5 . . . . . . 7 ((♯‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
3531, 34sylibr 233 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℕ)
3635nncnd 11989 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ∈ ℂ)
3735nnne0d 12023 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (♯‘𝑆) ≠ 0)
3836, 37div0d 11750 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (0 / (♯‘𝑆)) = 0)
3927, 38eqtrd 2778 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) = 0)
4015adantr 481 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
4140resqcld 13965 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾↑2) ∈ ℝ)
4241, 40resubcld 11403 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝐾↑2) − 𝐾) ∈ ℝ)
4342rehalfcld 12220 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (((𝐾↑2) − 𝐾) / 2) ∈ ℝ)
44 nndivre 12014 . . . . . . . 8 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4543, 44sylancom 588 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4645renegcld 11402 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4746adantr 481 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4847rpefcld 15814 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ+)
4948rpge0d 12776 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 0 ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
5039, 49eqbrtrd 5096 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
51 simplr 766 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
52 simpr 485 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾𝑁)
53 simpll 764 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℕ0)
54 nn0uz 12620 . . . . . . 7 0 = (ℤ‘0)
5553, 54eleqtrdi 2849 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (ℤ‘0))
56 nnz 12342 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5756ad2antlr 724 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℤ)
58 elfz5 13248 . . . . . 6 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
5955, 57, 58syl2anc 584 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
6052, 59mpbird 256 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (0...𝑁))
6128, 1birthdaylem2 26102 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
6251, 60, 61syl2anc 584 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
63 fzfid 13693 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (0...(𝐾 − 1)) ∈ Fin)
64 elfznn0 13349 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
6564adantl 482 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
6665nn0red 12294 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℝ)
6753nn0red 12294 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℝ)
68 peano2rem 11288 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) ∈ ℝ)
7069adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
7151adantr 481 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
7271nnred 11988 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℝ)
73 elfzle2 13260 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
7473adantl 482 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
7551nnred 11988 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℝ)
7667ltm1d 11907 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝐾)
7769, 67, 75, 76, 52ltletrd 11135 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝑁)
7877adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) < 𝑁)
7966, 70, 72, 74, 78lelttrd 11133 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < 𝑁)
8071nncnd 11989 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
8180mulid1d 10992 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 · 1) = 𝑁)
8279, 81breqtrrd 5102 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < (𝑁 · 1))
83 1red 10976 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 1 ∈ ℝ)
8471nngt0d 12022 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < 𝑁)
85 ltdivmul 11850 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8666, 83, 72, 84, 85syl112anc 1373 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8782, 86mpbird 256 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) < 1)
8866, 71nndivred 12027 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℝ)
89 1re 10975 . . . . . . . . 9 1 ∈ ℝ
90 difrp 12768 . . . . . . . . 9 (((𝑘 / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9188, 89, 90sylancl 586 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9287, 91mpbid 231 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ∈ ℝ+)
9392relogcld 25778 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
9488renegcld 11402 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → -(𝑘 / 𝑁) ∈ ℝ)
95 elfzle1 13259 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 0 ≤ 𝑘)
9695adantl 482 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ 𝑘)
97 divge0 11844 . . . . . . . . . . 11 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑘 / 𝑁))
9866, 96, 72, 84, 97syl22anc 836 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ (𝑘 / 𝑁))
9988, 98, 87eflegeo 15830 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))))
10088reefcld 15797 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ∈ ℝ)
101 efgt0 15812 . . . . . . . . . . 11 ((𝑘 / 𝑁) ∈ ℝ → 0 < (exp‘(𝑘 / 𝑁)))
10288, 101syl 17 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < (exp‘(𝑘 / 𝑁)))
10392rpregt0d 12778 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁))))
104 lerec2 11863 . . . . . . . . . 10 ((((exp‘(𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (exp‘(𝑘 / 𝑁))) ∧ ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁)))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
105100, 102, 103, 104syl21anc 835 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
10699, 105mpbid 231 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁))))
10792reeflogd 25779 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) = (1 − (𝑘 / 𝑁)))
10888recnd 11003 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℂ)
109 efneg 15807 . . . . . . . . 9 ((𝑘 / 𝑁) ∈ ℂ → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
110108, 109syl 17 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
111106, 107, 1103brtr4d 5106 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁)))
112 efle 15827 . . . . . . . 8 (((log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -(𝑘 / 𝑁) ∈ ℝ) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
11393, 94, 112syl2anc 584 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
114111, 113mpbird 256 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁))
11563, 93, 94, 114fsumle 15511 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁))
11663, 108fsumneg 15499 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
11751nncnd 11989 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℂ)
11866recnd 11003 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
119 nnne0 12007 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
120119ad2antlr 724 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ≠ 0)
12163, 117, 118, 120fsumdivc 15498 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
122 arisum2 15573 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
12353, 122syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
124123oveq1d 7290 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
125121, 124eqtr3d 2780 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
126125negeqd 11215 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
127116, 126eqtrd 2778 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
128115, 127breqtrd 5100 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
12963, 93fsumrecl 15446 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
13046adantr 481 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
131 efle 15827 . . . . 5 ((Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
132129, 130, 131syl2anc 584 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
133128, 132mpbid 231 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13462, 133eqbrtrd 5096 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13516adantl 482 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
13650, 134, 135, 40ltlecasei 11083 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((♯‘𝑇) / (♯‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wss 3887  c0 4256   class class class wbr 5074  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  cdom 8731  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  cexp 13782  chash 14044  Σcsu 15397  expce 15771  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  birthday  26104
  Copyright terms: Public domain W3C validator