MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bbid Structured version   Visualization version   GIF version

Theorem necon1bbid 3007
Description: Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.)
Hypothesis
Ref Expression
necon1bbid.1 (𝜑 → (𝐴𝐵𝜓))
Assertion
Ref Expression
necon1bbid (𝜑 → (¬ 𝜓𝐴 = 𝐵))

Proof of Theorem necon1bbid
StepHypRef Expression
1 df-ne 2969 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bbid.1 . . 3 (𝜑 → (𝐴𝐵𝜓))
31, 2syl5bbr 277 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝜓))
43con1bid 347 1 (𝜑 → (¬ 𝜓𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198   = wceq 1601  wne 2968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-ne 2969
This theorem is referenced by:  necon4abid  3008  blssioo  23006  metdstri  23062  rrxmvallem  23610  dchrpt  25444  lgsquad3  25564  eupth2lem2  27637  lkrpssN  35311  dochshpsat  37602
  Copyright terms: Public domain W3C validator