Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bbid | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.) |
Ref | Expression |
---|---|
necon1bbid.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
necon1bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bbid.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) | |
3 | 1, 2 | bitr3id 284 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝜓)) |
4 | 3 | con1bid 355 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon4abid 2983 blssioo 23864 metdstri 23920 rrxmvallem 24473 dchrpt 26320 lgsquad3 26440 eupth2lem2 28484 lkrpssN 37104 dochshpsat 39395 |
Copyright terms: Public domain | W3C validator |