| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bbid | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.) |
| Ref | Expression |
|---|---|
| necon1bbid.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| necon1bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bbid.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) | |
| 3 | 1, 2 | bitr3id 285 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 ↔ 𝜓)) |
| 4 | 3 | con1bid 355 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2941 |
| This theorem is referenced by: necon4abid 2981 blssioo 24816 metdstri 24873 rrxmvallem 25438 dchrpt 27311 lgsquad3 27431 eupth2lem2 30238 lkrpssN 39164 dochshpsat 41456 aks6d1c6lem3 42173 |
| Copyright terms: Public domain | W3C validator |