Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5bb 282 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr3di 285 necon1abid 2981 necon4abid 2983 uniiunlem 4015 r19.9rzv 4427 2reu4lem 4453 intprg 4909 inimasn 6048 fnresdisj 6536 fnsnfv 6829 f1oiso 7202 reldm 7858 rdglim2 8234 mptelixpg 8681 1idpr 10716 nndiv 11949 fz1sbc 13261 grpid 18530 znleval 20674 fbunfip 22928 lmflf 23064 metcld2 24376 lgsne0 26388 isuvtx 27665 loopclwwlkn1b 28307 clwwlknun 28377 frgrncvvdeqlem2 28565 isph 29085 ofpreima 30904 eulerpartlemd 32233 bnj168 32609 cardpred 32962 opelco3 33655 wl-2sb6d 35640 poimirlem26 35730 cnambfre 35752 heibor1 35895 opltn0 37131 cvrnbtwn2 37216 cvrnbtwn4 37220 atlltn0 37247 pmapjat1 37794 dih1dimatlem 39270 2rexfrabdioph 40534 dnwech 40789 rfovcnvf1od 41501 uneqsn 41522 lighneallem2 44946 isrnghm 45338 rnghmval2 45341 |
Copyright terms: Public domain | W3C validator |