Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bitrid 282 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr3di 286 necon1abid 2984 necon4abid 2986 uniiunlem 4024 r19.9rzv 4436 2reu4lem 4462 intprg 4918 inimasn 6057 fnresdisj 6549 fnsnfv 6842 f1oiso 7216 reldm 7872 rdglim2 8248 mptelixpg 8698 1idpr 10778 nndiv 12011 fz1sbc 13323 grpid 18605 znleval 20752 fbunfip 23010 lmflf 23146 metcld2 24461 lgsne0 26473 isuvtx 27752 loopclwwlkn1b 28394 clwwlknun 28464 frgrncvvdeqlem2 28652 isph 29172 ofpreima 30990 eulerpartlemd 32321 bnj168 32697 cardpred 33050 opelco3 33737 wl-2sb6d 35701 poimirlem26 35791 cnambfre 35813 heibor1 35956 opltn0 37192 cvrnbtwn2 37277 cvrnbtwn4 37281 atlltn0 37308 pmapjat1 37855 dih1dimatlem 39331 2rexfrabdioph 40607 dnwech 40862 rfovcnvf1od 41574 uneqsn 41595 lighneallem2 45019 isrnghm 45411 rnghmval2 45414 |
Copyright terms: Public domain | W3C validator |