| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2964 necon4abid 2966 uniiunlem 4053 r19.9rzv 4466 2reu4lem 4488 intprg 4948 inimasn 6132 fnresdisj 6641 fnsnfv 6943 f1oiso 7329 reldm 8026 rdglim2 8403 mptelixpg 8911 1idpr 10989 nndiv 12239 fz1sbc 13568 grpid 18914 isrnghm 20357 rnghmval2 20360 znleval 21471 fbunfip 23763 lmflf 23899 metcld2 25214 lgsne0 27253 isuvtx 29329 loopclwwlkn1b 29978 clwwlknun 30048 frgrncvvdeqlem2 30236 isph 30758 ofpreima 32596 fdifsupp 32615 ressply1mon1p 33544 eulerpartlemd 34364 bnj168 34727 cardpred 35087 opelco3 35769 wl-2sb6d 37553 poimirlem26 37647 cnambfre 37669 heibor1 37811 opltn0 39190 cvrnbtwn2 39275 cvrnbtwn4 39279 atlltn0 39306 pmapjat1 39854 dih1dimatlem 41330 2rexfrabdioph 42791 dnwech 43044 rfovcnvf1od 44000 uneqsn 44021 lighneallem2 47611 stgredgiun 47961 isinito2lem 49491 |
| Copyright terms: Public domain | W3C validator |