| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2963 necon4abid 2965 uniiunlem 4040 r19.9rzv 4453 2reu4lem 4475 intprg 4934 inimasn 6109 fnresdisj 6606 fnsnfv 6906 f1oiso 7292 reldm 7986 rdglim2 8361 mptelixpg 8869 1idpr 10942 nndiv 12192 fz1sbc 13521 grpid 18872 isrnghm 20344 rnghmval2 20347 znleval 21479 fbunfip 23772 lmflf 23908 metcld2 25223 lgsne0 27262 isuvtx 29358 loopclwwlkn1b 30004 clwwlknun 30074 frgrncvvdeqlem2 30262 isph 30784 ofpreima 32622 fdifsupp 32641 ressply1mon1p 33513 eulerpartlemd 34333 bnj168 34696 cardpred 35056 opelco3 35747 wl-2sb6d 37531 poimirlem26 37625 cnambfre 37647 heibor1 37789 opltn0 39168 cvrnbtwn2 39253 cvrnbtwn4 39257 atlltn0 39284 pmapjat1 39832 dih1dimatlem 41308 2rexfrabdioph 42769 dnwech 43021 rfovcnvf1od 43977 uneqsn 43998 lighneallem2 47591 stgredgiun 47941 isinito2lem 49471 |
| Copyright terms: Public domain | W3C validator |