| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2970 necon4abid 2972 uniiunlem 4062 r19.9rzv 4475 2reu4lem 4497 intprg 4957 inimasn 6145 fnresdisj 6658 fnsnfv 6958 f1oiso 7344 reldm 8043 rdglim2 8446 mptelixpg 8949 1idpr 11043 nndiv 12286 fz1sbc 13617 grpid 18958 isrnghm 20401 rnghmval2 20404 znleval 21515 fbunfip 23807 lmflf 23943 metcld2 25259 lgsne0 27298 isuvtx 29374 loopclwwlkn1b 30023 clwwlknun 30093 frgrncvvdeqlem2 30281 isph 30803 ofpreima 32643 fdifsupp 32662 ressply1mon1p 33581 eulerpartlemd 34398 bnj168 34761 cardpred 35121 opelco3 35792 wl-2sb6d 37576 poimirlem26 37670 cnambfre 37692 heibor1 37834 opltn0 39208 cvrnbtwn2 39293 cvrnbtwn4 39297 atlltn0 39324 pmapjat1 39872 dih1dimatlem 41348 2rexfrabdioph 42819 dnwech 43072 rfovcnvf1od 44028 uneqsn 44049 lighneallem2 47620 stgredgiun 47970 isinito2lem 49383 |
| Copyright terms: Public domain | W3C validator |