Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bitrid 282 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitr3di 286 necon1abid 2982 necon4abid 2984 uniiunlem 4019 r19.9rzv 4430 2reu4lem 4456 intprg 4912 inimasn 6059 fnresdisj 6552 fnsnfv 6847 f1oiso 7222 reldm 7885 rdglim2 8263 mptelixpg 8723 1idpr 10785 nndiv 12019 fz1sbc 13332 grpid 18615 znleval 20762 fbunfip 23020 lmflf 23156 metcld2 24471 lgsne0 26483 isuvtx 27762 loopclwwlkn1b 28406 clwwlknun 28476 frgrncvvdeqlem2 28664 isph 29184 ofpreima 31002 eulerpartlemd 32333 bnj168 32709 cardpred 33062 opelco3 33749 wl-2sb6d 35713 poimirlem26 35803 cnambfre 35825 heibor1 35968 opltn0 37204 cvrnbtwn2 37289 cvrnbtwn4 37293 atlltn0 37320 pmapjat1 37867 dih1dimatlem 39343 2rexfrabdioph 40618 dnwech 40873 rfovcnvf1od 41612 uneqsn 41633 lighneallem2 45058 isrnghm 45450 rnghmval2 45453 |
Copyright terms: Public domain | W3C validator |