| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2964 necon4abid 2966 uniiunlem 4035 r19.9rzv 4448 2reu4lem 4470 intprg 4929 inimasn 6100 fnresdisj 6597 fnsnfv 6896 f1oiso 7280 reldm 7971 rdglim2 8346 mptelixpg 8854 1idpr 10912 nndiv 12163 fz1sbc 13492 grpid 18880 isrnghm 20352 rnghmval2 20355 znleval 21484 fbunfip 23777 lmflf 23913 metcld2 25227 lgsne0 27266 ssltsnb 27725 isuvtx 29366 loopclwwlkn1b 30012 clwwlknun 30082 frgrncvvdeqlem2 30270 isph 30792 ofpreima 32637 fdifsupp 32656 ressply1mon1p 33521 eulerpartlemd 34369 bnj168 34732 cardpred 35092 opelco3 35787 wl-2sb6d 37571 poimirlem26 37665 cnambfre 37687 heibor1 37829 opltn0 39208 cvrnbtwn2 39293 cvrnbtwn4 39297 atlltn0 39324 pmapjat1 39871 dih1dimatlem 41347 2rexfrabdioph 42808 dnwech 43060 rfovcnvf1od 44016 uneqsn 44037 lighneallem2 47616 stgredgiun 47968 isinito2lem 49509 |
| Copyright terms: Public domain | W3C validator |