![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitr3di 286 necon1abid 2977 necon4abid 2979 uniiunlem 4097 r19.9rzv 4506 2reu4lem 4528 intprg 4986 inimasn 6178 fnresdisj 6689 fnsnfv 6988 f1oiso 7371 reldm 8068 rdglim2 8471 mptelixpg 8974 1idpr 11067 nndiv 12310 fz1sbc 13637 grpid 19006 isrnghm 20458 rnghmval2 20461 znleval 21591 fbunfip 23893 lmflf 24029 metcld2 25355 lgsne0 27394 isuvtx 29427 loopclwwlkn1b 30071 clwwlknun 30141 frgrncvvdeqlem2 30329 isph 30851 ofpreima 32682 fdifsupp 32700 ressply1mon1p 33573 eulerpartlemd 34348 bnj168 34723 cardpred 35083 opelco3 35756 wl-2sb6d 37539 poimirlem26 37633 cnambfre 37655 heibor1 37797 opltn0 39172 cvrnbtwn2 39257 cvrnbtwn4 39261 atlltn0 39288 pmapjat1 39836 dih1dimatlem 41312 2rexfrabdioph 42784 dnwech 43037 rfovcnvf1od 43994 uneqsn 44015 lighneallem2 47531 stgredgiun 47861 |
Copyright terms: Public domain | W3C validator |