![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitr3di 286 necon1abid 2985 necon4abid 2987 uniiunlem 4110 r19.9rzv 4523 2reu4lem 4545 intprg 5005 inimasn 6187 fnresdisj 6700 fnsnfv 7001 f1oiso 7387 reldm 8085 rdglim2 8488 mptelixpg 8993 1idpr 11098 nndiv 12339 fz1sbc 13660 grpid 19015 isrnghm 20467 rnghmval2 20470 znleval 21596 fbunfip 23898 lmflf 24034 metcld2 25360 lgsne0 27397 isuvtx 29430 loopclwwlkn1b 30074 clwwlknun 30144 frgrncvvdeqlem2 30332 isph 30854 ofpreima 32683 ressply1mon1p 33558 eulerpartlemd 34331 bnj168 34706 cardpred 35066 opelco3 35738 wl-2sb6d 37512 poimirlem26 37606 cnambfre 37628 heibor1 37770 opltn0 39146 cvrnbtwn2 39231 cvrnbtwn4 39235 atlltn0 39262 pmapjat1 39810 dih1dimatlem 41286 2rexfrabdioph 42752 dnwech 43005 rfovcnvf1od 43966 uneqsn 43987 lighneallem2 47480 |
Copyright terms: Public domain | W3C validator |