| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2963 necon4abid 2965 uniiunlem 4050 r19.9rzv 4463 2reu4lem 4485 intprg 4945 inimasn 6129 fnresdisj 6638 fnsnfv 6940 f1oiso 7326 reldm 8023 rdglim2 8400 mptelixpg 8908 1idpr 10982 nndiv 12232 fz1sbc 13561 grpid 18907 isrnghm 20350 rnghmval2 20353 znleval 21464 fbunfip 23756 lmflf 23892 metcld2 25207 lgsne0 27246 isuvtx 29322 loopclwwlkn1b 29971 clwwlknun 30041 frgrncvvdeqlem2 30229 isph 30751 ofpreima 32589 fdifsupp 32608 ressply1mon1p 33537 eulerpartlemd 34357 bnj168 34720 cardpred 35080 opelco3 35762 wl-2sb6d 37546 poimirlem26 37640 cnambfre 37662 heibor1 37804 opltn0 39183 cvrnbtwn2 39268 cvrnbtwn4 39272 atlltn0 39299 pmapjat1 39847 dih1dimatlem 41323 2rexfrabdioph 42784 dnwech 43037 rfovcnvf1od 43993 uneqsn 44014 lighneallem2 47607 stgredgiun 47957 isinito2lem 49487 |
| Copyright terms: Public domain | W3C validator |