| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bitr2id | Structured version Visualization version GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2id.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr2id | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2id.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2id.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | bitrid 283 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitr3di 286 necon1abid 2968 necon4abid 2970 uniiunlem 4038 r19.9rzv 4451 2reu4lem 4473 intprg 4933 inimasn 6111 fnresdisj 6609 fnsnfv 6910 f1oiso 7294 reldm 7985 rdglim2 8360 mptelixpg 8868 1idpr 10930 nndiv 12181 fz1sbc 13510 grpid 18898 isrnghm 20369 rnghmval2 20372 znleval 21501 fbunfip 23794 lmflf 23930 metcld2 25244 lgsne0 27283 ssltsnb 27742 isuvtx 29384 loopclwwlkn1b 30033 clwwlknun 30103 frgrncvvdeqlem2 30291 isph 30813 ofpreima 32658 fdifsupp 32677 ressply1mon1p 33542 eulerpartlemd 34390 bnj168 34753 cardpred 35114 opelco3 35830 wl-2sb6d 37613 poimirlem26 37696 cnambfre 37718 heibor1 37860 opltn0 39299 cvrnbtwn2 39384 cvrnbtwn4 39388 atlltn0 39415 pmapjat1 39962 dih1dimatlem 41438 2rexfrabdioph 42903 dnwech 43155 rfovcnvf1od 44111 uneqsn 44132 lighneallem2 47720 stgredgiun 48072 isinito2lem 49613 |
| Copyright terms: Public domain | W3C validator |