![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsprme0 | Structured version Visualization version GIF version |
Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgsprme0 | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 16611 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | lgsne0 26835 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) | |
3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ (𝐴 gcd 𝑃) = 1)) |
4 | coprm 16647 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | |
5 | 4 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) |
6 | 1 | anim1i 615 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
7 | 6 | ancoms 459 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
8 | gcdcom 16453 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 gcd 𝐴) = (𝐴 gcd 𝑃)) |
10 | 9 | eqeq1d 2734 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝑃 gcd 𝐴) = 1 ↔ (𝐴 gcd 𝑃) = 1)) |
11 | 5, 10 | bitr2d 279 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ 𝐴)) |
12 | prmnn 16610 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
13 | dvdsval3 16200 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) | |
14 | 12, 13 | sylan 580 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
15 | 14 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 ∥ 𝐴 ↔ (𝐴 mod 𝑃) = 0)) |
16 | 15 | notbid 317 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐴 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
17 | 3, 11, 16 | 3bitrd 304 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) ≠ 0 ↔ ¬ (𝐴 mod 𝑃) = 0)) |
18 | 17 | necon4abid 2981 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 (class class class)co 7408 0cc0 11109 1c1 11110 ℕcn 12211 ℤcz 12557 mod cmo 13833 ∥ cdvds 16196 gcd cgcd 16434 ℙcprime 16607 /L clgs 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 df-prm 16608 df-phi 16698 df-pc 16769 df-lgs 26795 |
This theorem is referenced by: lgsqrmodndvds 26853 |
Copyright terms: Public domain | W3C validator |