MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbi Structured version   Visualization version   GIF version

Theorem nmounbi 28711
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbi (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmounbi
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmobndi 28710 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
91, 2, 5nmorepnf 28703 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
106, 7, 9mp3an12 1452 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
11 ffvelrn 6859 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑇𝑦) ∈ 𝑌)
122, 4nvcl 28596 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑦) ∈ 𝑌) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
137, 11, 12sylancr 590 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
14 lenlt 10797 . . . . . . . . . . 11 (((𝑀‘(𝑇𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1513, 14sylan 583 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝑦𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1615an32s 652 . . . . . . . . 9 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1716imbi2d 344 . . . . . . . 8 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦)))))
18 imnan 403 . . . . . . . 8 (((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
1917, 18bitrdi 290 . . . . . . 7 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2019ralbidva 3108 . . . . . 6 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
21 ralnex 3149 . . . . . 6 (∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2220, 21bitrdi 290 . . . . 5 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2322rexbidva 3206 . . . 4 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
24 rexnal 3151 . . . 4 (∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2523, 24bitrdi 290 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
268, 10, 253bitr3d 312 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2726necon4abid 2974 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054   class class class wbr 5030  wf 6335  cfv 6339  (class class class)co 7170  cr 10614  1c1 10616  +∞cpnf 10750   < clt 10753  cle 10754  NrmCVeccnv 28519  BaseSetcba 28521  normCVcnmcv 28525   normOpOLD cnmoo 28676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-grpo 28428  df-gid 28429  df-ginv 28430  df-ablo 28480  df-vc 28494  df-nv 28527  df-va 28530  df-ba 28531  df-sm 28532  df-0v 28533  df-nmcv 28535  df-nmoo 28680
This theorem is referenced by:  nmounbseqi  28712  nmounbseqiALT  28713
  Copyright terms: Public domain W3C validator