MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbi Structured version   Visualization version   GIF version

Theorem nmounbi 30712
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbi (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmounbi
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmobndi 30711 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
91, 2, 5nmorepnf 30704 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
106, 7, 9mp3an12 1453 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
11 ffvelcdm 7056 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑇𝑦) ∈ 𝑌)
122, 4nvcl 30597 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑦) ∈ 𝑌) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
137, 11, 12sylancr 587 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
14 lenlt 11259 . . . . . . . . . . 11 (((𝑀‘(𝑇𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1513, 14sylan 580 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝑦𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1615an32s 652 . . . . . . . . 9 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1716imbi2d 340 . . . . . . . 8 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦)))))
18 imnan 399 . . . . . . . 8 (((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
1917, 18bitrdi 287 . . . . . . 7 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2019ralbidva 3155 . . . . . 6 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
21 ralnex 3056 . . . . . 6 (∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2220, 21bitrdi 287 . . . . 5 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2322rexbidva 3156 . . . 4 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
24 rexnal 3083 . . . 4 (∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2523, 24bitrdi 287 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
268, 10, 253bitr3d 309 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2726necon4abid 2966 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076  +∞cpnf 11212   < clt 11215  cle 11216  NrmCVeccnv 30520  BaseSetcba 30522  normCVcnmcv 30526   normOpOLD cnmoo 30677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-nmoo 30681
This theorem is referenced by:  nmounbseqi  30713  nmounbseqiALT  30714
  Copyright terms: Public domain W3C validator