| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmounbi | Structured version Visualization version GIF version | ||
| Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmounbi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmobndi 30723 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 9 | 1, 2, 5 | nmorepnf 30716 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 10 | 6, 7, 9 | mp3an12 1453 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 11 | ffvelcdm 7015 | . . . . . . . . . . . 12 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑇‘𝑦) ∈ 𝑌) | |
| 12 | 2, 4 | nvcl 30609 | . . . . . . . . . . . 12 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑦) ∈ 𝑌) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 13 | 7, 11, 12 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 14 | lenlt 11194 | . . . . . . . . . . 11 ⊢ (((𝑀‘(𝑇‘𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 15 | 13, 14 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 16 | 15 | an32s 652 | . . . . . . . . 9 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 17 | 16 | imbi2d 340 | . . . . . . . 8 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 18 | imnan 399 | . . . . . . . 8 ⊢ (((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 20 | 19 | ralbidva 3150 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 21 | ralnex 3055 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 22 | 20, 21 | bitrdi 287 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 23 | 22 | rexbidva 3151 | . . . 4 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 24 | rexnal 3081 | . . . 4 ⊢ (∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 25 | 23, 24 | bitrdi 287 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 26 | 8, 10, 25 | 3bitr3d 309 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 27 | 26 | necon4abid 2965 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 1c1 11010 +∞cpnf 11146 < clt 11149 ≤ cle 11150 NrmCVeccnv 30532 BaseSetcba 30534 normCVcnmcv 30538 normOpOLD cnmoo 30689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-grpo 30441 df-gid 30442 df-ginv 30443 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-nmcv 30548 df-nmoo 30693 |
| This theorem is referenced by: nmounbseqi 30725 nmounbseqiALT 30726 |
| Copyright terms: Public domain | W3C validator |