| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmounbi | Structured version Visualization version GIF version | ||
| Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmounbi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmobndi 30723 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 9 | 1, 2, 5 | nmorepnf 30716 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 10 | 6, 7, 9 | mp3an12 1452 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 11 | ffvelcdm 7081 | . . . . . . . . . . . 12 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑇‘𝑦) ∈ 𝑌) | |
| 12 | 2, 4 | nvcl 30609 | . . . . . . . . . . . 12 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑦) ∈ 𝑌) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 13 | 7, 11, 12 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 14 | lenlt 11321 | . . . . . . . . . . 11 ⊢ (((𝑀‘(𝑇‘𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 15 | 13, 14 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 16 | 15 | an32s 652 | . . . . . . . . 9 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 17 | 16 | imbi2d 340 | . . . . . . . 8 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 18 | imnan 399 | . . . . . . . 8 ⊢ (((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 20 | 19 | ralbidva 3163 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 21 | ralnex 3061 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 22 | 20, 21 | bitrdi 287 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 23 | 22 | rexbidva 3164 | . . . 4 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 24 | rexnal 3088 | . . . 4 ⊢ (∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 25 | 23, 24 | bitrdi 287 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 26 | 8, 10, 25 | 3bitr3d 309 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 27 | 26 | necon4abid 2971 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 class class class wbr 5123 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 1c1 11138 +∞cpnf 11274 < clt 11277 ≤ cle 11278 NrmCVeccnv 30532 BaseSetcba 30534 normCVcnmcv 30538 normOpOLD cnmoo 30689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-seq 14025 df-exp 14085 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-grpo 30441 df-gid 30442 df-ginv 30443 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-nmcv 30548 df-nmoo 30693 |
| This theorem is referenced by: nmounbseqi 30725 nmounbseqiALT 30726 |
| Copyright terms: Public domain | W3C validator |