MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbi Structured version   Visualization version   GIF version

Theorem nmounbi 27971
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbi (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmounbi
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmobndi 27970 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
91, 2, 5nmorepnf 27963 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
106, 7, 9mp3an12 1562 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
11 ffvelrn 6500 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑇𝑦) ∈ 𝑌)
122, 4nvcl 27856 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑦) ∈ 𝑌) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
137, 11, 12sylancr 567 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
14 lenlt 10318 . . . . . . . . . . 11 (((𝑀‘(𝑇𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1513, 14sylan 561 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝑦𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1615an32s 623 . . . . . . . . 9 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1716imbi2d 329 . . . . . . . 8 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦)))))
18 imnan 386 . . . . . . . 8 (((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
1917, 18syl6bb 276 . . . . . . 7 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2019ralbidva 3134 . . . . . 6 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
21 ralnex 3141 . . . . . 6 (∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2220, 21syl6bb 276 . . . . 5 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2322rexbidva 3197 . . . 4 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
24 rexnal 3143 . . . 4 (∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2523, 24syl6bb 276 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
268, 10, 253bitr3d 298 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2726necon4abid 2983 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  cr 10137  1c1 10139  +∞cpnf 10273   < clt 10276  cle 10277  NrmCVeccnv 27779  BaseSetcba 27781  normCVcnmcv 27785   normOpOLD cnmoo 27936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-grpo 27687  df-gid 27688  df-ginv 27689  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-nmcv 27795  df-nmoo 27940
This theorem is referenced by:  nmounbseqi  27972  nmounbseqiALT  27973
  Copyright terms: Public domain W3C validator