MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbi Structured version   Visualization version   GIF version

Theorem nmounbi 30724
Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmounbi (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Distinct variable groups:   𝑦,𝑟,𝐿   𝑦,𝑈   𝑦,𝑊   𝑌,𝑟,𝑦   𝑀,𝑟,𝑦   𝑇,𝑟,𝑦   𝑋,𝑟,𝑦   𝑁,𝑟,𝑦
Allowed substitution hints:   𝑈(𝑟)   𝑊(𝑟)

Proof of Theorem nmounbi
StepHypRef Expression
1 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
3 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
4 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
5 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
6 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
7 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
81, 2, 3, 4, 5, 6, 7nmobndi 30723 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟)))
91, 2, 5nmorepnf 30716 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
106, 7, 9mp3an12 1452 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ (𝑁𝑇) ≠ +∞))
11 ffvelcdm 7081 . . . . . . . . . . . 12 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑇𝑦) ∈ 𝑌)
122, 4nvcl 30609 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑦) ∈ 𝑌) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
137, 11, 12sylancr 587 . . . . . . . . . . 11 ((𝑇:𝑋𝑌𝑦𝑋) → (𝑀‘(𝑇𝑦)) ∈ ℝ)
14 lenlt 11321 . . . . . . . . . . 11 (((𝑀‘(𝑇𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1513, 14sylan 580 . . . . . . . . . 10 (((𝑇:𝑋𝑌𝑦𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1615an32s 652 . . . . . . . . 9 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → ((𝑀‘(𝑇𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇𝑦))))
1716imbi2d 340 . . . . . . . 8 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦)))))
18 imnan 399 . . . . . . . 8 (((𝐿𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
1917, 18bitrdi 287 . . . . . . 7 (((𝑇:𝑋𝑌𝑟 ∈ ℝ) ∧ 𝑦𝑋) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2019ralbidva 3163 . . . . . 6 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
21 ralnex 3061 . . . . . 6 (∀𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2220, 21bitrdi 287 . . . . 5 ((𝑇:𝑋𝑌𝑟 ∈ ℝ) → (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2322rexbidva 3164 . . . 4 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
24 rexnal 3088 . . . 4 (∃𝑟 ∈ ℝ ¬ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦))))
2523, 24bitrdi 287 . . 3 (𝑇:𝑋𝑌 → (∃𝑟 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
268, 10, 253bitr3d 309 . 2 (𝑇:𝑋𝑌 → ((𝑁𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
2726necon4abid 2971 1 (𝑇:𝑋𝑌 → ((𝑁𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦𝑋 ((𝐿𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059   class class class wbr 5123  wf 6537  cfv 6541  (class class class)co 7413  cr 11136  1c1 11138  +∞cpnf 11274   < clt 11277  cle 11278  NrmCVeccnv 30532  BaseSetcba 30534  normCVcnmcv 30538   normOpOLD cnmoo 30689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-grpo 30441  df-gid 30442  df-ginv 30443  df-ablo 30493  df-vc 30507  df-nv 30540  df-va 30543  df-ba 30544  df-sm 30545  df-0v 30546  df-nmcv 30548  df-nmoo 30693
This theorem is referenced by:  nmounbseqi  30725  nmounbseqiALT  30726
  Copyright terms: Public domain W3C validator