| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmounbi | Structured version Visualization version GIF version | ||
| Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmounbi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmobndi 30755 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 9 | 1, 2, 5 | nmorepnf 30748 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 10 | 6, 7, 9 | mp3an12 1453 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 11 | ffvelcdm 7035 | . . . . . . . . . . . 12 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑇‘𝑦) ∈ 𝑌) | |
| 12 | 2, 4 | nvcl 30641 | . . . . . . . . . . . 12 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑦) ∈ 𝑌) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 13 | 7, 11, 12 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 14 | lenlt 11230 | . . . . . . . . . . 11 ⊢ (((𝑀‘(𝑇‘𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 15 | 13, 14 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 16 | 15 | an32s 652 | . . . . . . . . 9 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 17 | 16 | imbi2d 340 | . . . . . . . 8 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 18 | imnan 399 | . . . . . . . 8 ⊢ (((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 20 | 19 | ralbidva 3154 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 21 | ralnex 3055 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 22 | 20, 21 | bitrdi 287 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 23 | 22 | rexbidva 3155 | . . . 4 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 24 | rexnal 3082 | . . . 4 ⊢ (∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 25 | 23, 24 | bitrdi 287 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 26 | 8, 10, 25 | 3bitr3d 309 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 27 | 26 | necon4abid 2965 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11045 1c1 11047 +∞cpnf 11183 < clt 11186 ≤ cle 11187 NrmCVeccnv 30564 BaseSetcba 30566 normCVcnmcv 30570 normOpOLD cnmoo 30721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-rp 12930 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-grpo 30473 df-gid 30474 df-ginv 30475 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 df-nmoo 30725 |
| This theorem is referenced by: nmounbseqi 30757 nmounbseqiALT 30758 |
| Copyright terms: Public domain | W3C validator |