| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmounbi | Structured version Visualization version GIF version | ||
| Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
| nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
| nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| nmounbi | ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 3 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
| 4 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
| 5 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 6 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | nmobndi 30756 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) |
| 9 | 1, 2, 5 | nmorepnf 30749 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 10 | 6, 7, 9 | mp3an12 1453 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
| 11 | ffvelcdm 7071 | . . . . . . . . . . . 12 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑇‘𝑦) ∈ 𝑌) | |
| 12 | 2, 4 | nvcl 30642 | . . . . . . . . . . . 12 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝑦) ∈ 𝑌) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 13 | 7, 11, 12 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) → (𝑀‘(𝑇‘𝑦)) ∈ ℝ) |
| 14 | lenlt 11313 | . . . . . . . . . . 11 ⊢ (((𝑀‘(𝑇‘𝑦)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 15 | 13, 14 | sylan 580 | . . . . . . . . . 10 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑦 ∈ 𝑋) ∧ 𝑟 ∈ ℝ) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 16 | 15 | an32s 652 | . . . . . . . . 9 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑟 ↔ ¬ 𝑟 < (𝑀‘(𝑇‘𝑦)))) |
| 17 | 16 | imbi2d 340 | . . . . . . . 8 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 18 | imnan 399 | . . . . . . . 8 ⊢ (((𝐿‘𝑦) ≤ 1 → ¬ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . . . 7 ⊢ (((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ 𝑋) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 20 | 19 | ralbidva 3161 | . . . . . 6 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 21 | ralnex 3062 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 22 | 20, 21 | bitrdi 287 | . . . . 5 ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑟 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 23 | 22 | rexbidva 3162 | . . . 4 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 24 | rexnal 3089 | . . . 4 ⊢ (∃𝑟 ∈ ℝ ¬ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦)))) | |
| 25 | 23, 24 | bitrdi 287 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟) ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 26 | 8, 10, 25 | 3bitr3d 309 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ≠ +∞ ↔ ¬ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| 27 | 26 | necon4abid 2972 | 1 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 +∞cpnf 11266 < clt 11269 ≤ cle 11270 NrmCVeccnv 30565 BaseSetcba 30567 normCVcnmcv 30571 normOpOLD cnmoo 30722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-grpo 30474 df-gid 30475 df-ginv 30476 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-nmcv 30581 df-nmoo 30726 |
| This theorem is referenced by: nmounbseqi 30758 nmounbseqiALT 30759 |
| Copyright terms: Public domain | W3C validator |