Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrn Structured version   Visualization version   GIF version

Theorem disjecxrn 38345
Description: Two ways of saying that (𝑅𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.)
Assertion
Ref Expression
disjecxrn ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))

Proof of Theorem disjecxrn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecxrn 38343 . . . . . . . . . 10 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
2 ecxrn 38343 . . . . . . . . . 10 (𝐵𝑊 → [𝐵](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)})
31, 2ineqan12d 4243 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}))
4 inopab 5853 . . . . . . . . 9 ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))}
53, 4eqtrdi 2796 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))})
6 an4 655 . . . . . . . . 9 (((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧)) ↔ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
76opabbii 5233 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))} = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))}
85, 7eqtrdi 2796 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))})
98neeq1d 3006 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅))
10 opabn0 5572 . . . . . 6 ({⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
119, 10bitrdi 287 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))))
12 exdistrv 1955 . . . . 5 (∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1311, 12bitrdi 287 . . . 4 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
14 ecinn0 38309 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦)))
15 ecinn0 38309 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅ ↔ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1614, 15anbi12d 631 . . . 4 ((𝐴𝑉𝐵𝑊) → ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
1713, 16bitr4d 282 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅)))
18 neanior 3041 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))
1917, 18bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
2019necon4abid 2987 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wne 2946  cin 3975  c0 4352   class class class wbr 5166  {copab 5228  [cec 8761  cxrn 38134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-ec 8765  df-xrn 38327
This theorem is referenced by:  disjecxrncnvep  38346
  Copyright terms: Public domain W3C validator