Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrn Structured version   Visualization version   GIF version

Theorem disjecxrn 36603
Description: Two ways of saying that (𝑅𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.)
Assertion
Ref Expression
disjecxrn ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))

Proof of Theorem disjecxrn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecxrn 36601 . . . . . . . . . 10 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
2 ecxrn 36601 . . . . . . . . . 10 (𝐵𝑊 → [𝐵](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)})
31, 2ineqan12d 4154 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}))
4 inopab 5751 . . . . . . . . 9 ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))}
53, 4eqtrdi 2792 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))})
6 an4 654 . . . . . . . . 9 (((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧)) ↔ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
76opabbii 5148 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))} = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))}
85, 7eqtrdi 2792 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))})
98neeq1d 3000 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅))
10 opabn0 5479 . . . . . 6 ({⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
119, 10bitrdi 287 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))))
12 exdistrv 1957 . . . . 5 (∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1311, 12bitrdi 287 . . . 4 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
14 ecinn0 36566 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦)))
15 ecinn0 36566 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅ ↔ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1614, 15anbi12d 632 . . . 4 ((𝐴𝑉𝐵𝑊) → ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
1713, 16bitr4d 282 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅)))
18 neanior 3034 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))
1917, 18bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
2019necon4abid 2981 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wex 1779  wcel 2104  wne 2940  cin 3891  c0 4262   class class class wbr 5081  {copab 5143  [cec 8527  cxrn 36380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-2nd 7864  df-ec 8531  df-xrn 36585
This theorem is referenced by:  disjecxrncnvep  36604
  Copyright terms: Public domain W3C validator