Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjecxrn Structured version   Visualization version   GIF version

Theorem disjecxrn 38446
Description: Two ways of saying that (𝑅𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.)
Assertion
Ref Expression
disjecxrn ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))

Proof of Theorem disjecxrn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecxrn 38440 . . . . . . . . . 10 (𝐴𝑉 → [𝐴](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)})
2 ecxrn 38440 . . . . . . . . . 10 (𝐵𝑊 → [𝐵](𝑅𝑆) = {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)})
31, 2ineqan12d 4169 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}))
4 inopab 5768 . . . . . . . . 9 ({⟨𝑦, 𝑧⟩ ∣ (𝐴𝑅𝑦𝐴𝑆𝑧)} ∩ {⟨𝑦, 𝑧⟩ ∣ (𝐵𝑅𝑦𝐵𝑆𝑧)}) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))}
53, 4eqtrdi 2782 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))})
6 an4 656 . . . . . . . . 9 (((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧)) ↔ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
76opabbii 5156 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐴𝑆𝑧) ∧ (𝐵𝑅𝑦𝐵𝑆𝑧))} = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))}
85, 7eqtrdi 2782 . . . . . . 7 ((𝐴𝑉𝐵𝑊) → ([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))})
98neeq1d 2987 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ {⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅))
10 opabn0 5491 . . . . . 6 ({⟨𝑦, 𝑧⟩ ∣ ((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))} ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)))
119, 10bitrdi 287 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧))))
12 exdistrv 1956 . . . . 5 (∃𝑦𝑧((𝐴𝑅𝑦𝐵𝑅𝑦) ∧ (𝐴𝑆𝑧𝐵𝑆𝑧)) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1311, 12bitrdi 287 . . . 4 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
14 ecinn0 38395 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦)))
15 ecinn0 38395 . . . . 5 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅ ↔ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧)))
1614, 15anbi12d 632 . . . 4 ((𝐴𝑉𝐵𝑊) → ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ (∃𝑦(𝐴𝑅𝑦𝐵𝑅𝑦) ∧ ∃𝑧(𝐴𝑆𝑧𝐵𝑆𝑧))))
1713, 16bitr4d 282 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅)))
18 neanior 3021 . . 3 ((([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ∧ ([𝐴]𝑆 ∩ [𝐵]𝑆) ≠ ∅) ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))
1917, 18bitrdi 287 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) ≠ ∅ ↔ ¬ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
2019necon4abid 2968 1 ((𝐴𝑉𝐵𝑊) → (([𝐴](𝑅𝑆) ∩ [𝐵](𝑅𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wne 2928  cin 3896  c0 4280   class class class wbr 5089  {copab 5151  [cec 8620  cxrn 38224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38414
This theorem is referenced by:  disjecxrncnvep  38447
  Copyright terms: Public domain W3C validator