MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4ai Structured version   Visualization version   GIF version

Theorem necon4ai 2975
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon4ai.1 (𝐴𝐵 → ¬ 𝜑)
Assertion
Ref Expression
necon4ai (𝜑𝐴 = 𝐵)

Proof of Theorem necon4ai
StepHypRef Expression
1 notnot 142 . 2 (𝜑 → ¬ ¬ 𝜑)
2 necon4ai.1 . . 3 (𝐴𝐵 → ¬ 𝜑)
32necon1bi 2972 . 2 (¬ ¬ 𝜑𝐴 = 𝐵)
41, 3syl 17 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  necon4i  2979  dmsn0el  6114  funsneqopb  7024  cfeq0  10012
  Copyright terms: Public domain W3C validator