MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqopb Structured version   Visualization version   GIF version

Theorem funsneqopb 7186
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsneqopb (𝐴 = 𝐵𝐺 ∈ (V × V))

Proof of Theorem funsneqopb
StepHypRef Expression
1 funsndifnop.g . . . 4 𝐺 = {⟨𝐴, 𝐵⟩}
2 opeq1 4897 . . . . . 6 (𝐴 = 𝐵 → ⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐵⟩)
32sneqd 4660 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐵⟩})
4 funsndifnop.b . . . . . 6 𝐵 ∈ V
54snopeqopsnid 5528 . . . . 5 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
63, 5eqtrdi 2796 . . . 4 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩)
71, 6eqtrid 2792 . . 3 (𝐴 = 𝐵𝐺 = ⟨{𝐵}, {𝐵}⟩)
8 snex 5451 . . . 4 {𝐵} ∈ V
98, 8opelvv 5740 . . 3 ⟨{𝐵}, {𝐵}⟩ ∈ (V × V)
107, 9eqeltrdi 2852 . 2 (𝐴 = 𝐵𝐺 ∈ (V × V))
11 funsndifnop.a . . . 4 𝐴 ∈ V
1211, 4, 1funsndifnop 7185 . . 3 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
1312necon4ai 2978 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
1410, 13impbii 209 1 (𝐴 = 𝐵𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator