![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsneqopb | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
funsndifnop.a | ⊢ 𝐴 ∈ V |
funsndifnop.b | ⊢ 𝐵 ∈ V |
funsndifnop.g | ⊢ 𝐺 = {〈𝐴, 𝐵〉} |
Ref | Expression |
---|---|
funsneqopb | ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsndifnop.g | . . . 4 ⊢ 𝐺 = {〈𝐴, 𝐵〉} | |
2 | opeq1 4625 | . . . . . 6 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐵〉 = 〈𝐵, 𝐵〉) | |
3 | 2 | sneqd 4411 | . . . . 5 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐵〉} = {〈𝐵, 𝐵〉}) |
4 | funsndifnop.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
5 | 4 | snopeqopsnid 5197 | . . . . 5 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
6 | 3, 5 | syl6eq 2877 | . . . 4 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐵〉} = 〈{𝐵}, {𝐵}〉) |
7 | 1, 6 | syl5eq 2873 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐵}, {𝐵}〉) |
8 | snex 5131 | . . . 4 ⊢ {𝐵} ∈ V | |
9 | 8, 8 | opelvv 5385 | . . 3 ⊢ 〈{𝐵}, {𝐵}〉 ∈ (V × V) |
10 | 7, 9 | syl6eqel 2914 | . 2 ⊢ (𝐴 = 𝐵 → 𝐺 ∈ (V × V)) |
11 | funsndifnop.a | . . . 4 ⊢ 𝐴 ∈ V | |
12 | 11, 4, 1 | funsndifnop 6672 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ (V × V)) |
13 | 12 | necon4ai 3030 | . 2 ⊢ (𝐺 ∈ (V × V) → 𝐴 = 𝐵) |
14 | 10, 13 | impbii 201 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 ∈ wcel 2164 Vcvv 3414 {csn 4399 〈cop 4405 × cxp 5344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |