MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqopb Structured version   Visualization version   GIF version

Theorem funsneqopb 7006
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsneqopb (𝐴 = 𝐵𝐺 ∈ (V × V))

Proof of Theorem funsneqopb
StepHypRef Expression
1 funsndifnop.g . . . 4 𝐺 = {⟨𝐴, 𝐵⟩}
2 opeq1 4801 . . . . . 6 (𝐴 = 𝐵 → ⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐵⟩)
32sneqd 4570 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐵⟩})
4 funsndifnop.b . . . . . 6 𝐵 ∈ V
54snopeqopsnid 5417 . . . . 5 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
63, 5eqtrdi 2795 . . . 4 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩)
71, 6eqtrid 2790 . . 3 (𝐴 = 𝐵𝐺 = ⟨{𝐵}, {𝐵}⟩)
8 snex 5349 . . . 4 {𝐵} ∈ V
98, 8opelvv 5619 . . 3 ⟨{𝐵}, {𝐵}⟩ ∈ (V × V)
107, 9eqeltrdi 2847 . 2 (𝐴 = 𝐵𝐺 ∈ (V × V))
11 funsndifnop.a . . . 4 𝐴 ∈ V
1211, 4, 1funsndifnop 7005 . . 3 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
1312necon4ai 2974 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
1410, 13impbii 208 1 (𝐴 = 𝐵𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator