Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funsneqopb | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
funsndifnop.a | ⊢ 𝐴 ∈ V |
funsndifnop.b | ⊢ 𝐵 ∈ V |
funsndifnop.g | ⊢ 𝐺 = {〈𝐴, 𝐵〉} |
Ref | Expression |
---|---|
funsneqopb | ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsndifnop.g | . . . 4 ⊢ 𝐺 = {〈𝐴, 𝐵〉} | |
2 | opeq1 4817 | . . . . . 6 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐵〉 = 〈𝐵, 𝐵〉) | |
3 | 2 | sneqd 4585 | . . . . 5 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐵〉} = {〈𝐵, 𝐵〉}) |
4 | funsndifnop.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
5 | 4 | snopeqopsnid 5453 | . . . . 5 ⊢ {〈𝐵, 𝐵〉} = 〈{𝐵}, {𝐵}〉 |
6 | 3, 5 | eqtrdi 2792 | . . . 4 ⊢ (𝐴 = 𝐵 → {〈𝐴, 𝐵〉} = 〈{𝐵}, {𝐵}〉) |
7 | 1, 6 | eqtrid 2788 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐺 = 〈{𝐵}, {𝐵}〉) |
8 | snex 5376 | . . . 4 ⊢ {𝐵} ∈ V | |
9 | 8, 8 | opelvv 5659 | . . 3 ⊢ 〈{𝐵}, {𝐵}〉 ∈ (V × V) |
10 | 7, 9 | eqeltrdi 2845 | . 2 ⊢ (𝐴 = 𝐵 → 𝐺 ∈ (V × V)) |
11 | funsndifnop.a | . . . 4 ⊢ 𝐴 ∈ V | |
12 | 11, 4, 1 | funsndifnop 7079 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ (V × V)) |
13 | 12 | necon4ai 2972 | . 2 ⊢ (𝐺 ∈ (V × V) → 𝐴 = 𝐵) |
14 | 10, 13 | impbii 208 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4573 〈cop 4579 × cxp 5618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |