![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsneqopb | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
funsndifnop.a | ⊢ 𝐴 ∈ V |
funsndifnop.b | ⊢ 𝐵 ∈ V |
funsndifnop.g | ⊢ 𝐺 = {⟨𝐴, 𝐵⟩} |
Ref | Expression |
---|---|
funsneqopb | ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsndifnop.g | . . . 4 ⊢ 𝐺 = {⟨𝐴, 𝐵⟩} | |
2 | opeq1 4865 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐵⟩) | |
3 | 2 | sneqd 4632 | . . . . 5 ⊢ (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐵⟩}) |
4 | funsndifnop.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
5 | 4 | snopeqopsnid 5499 | . . . . 5 ⊢ {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩ |
6 | 3, 5 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩) |
7 | 1, 6 | eqtrid 2776 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐺 = ⟨{𝐵}, {𝐵}⟩) |
8 | snex 5421 | . . . 4 ⊢ {𝐵} ∈ V | |
9 | 8, 8 | opelvv 5706 | . . 3 ⊢ ⟨{𝐵}, {𝐵}⟩ ∈ (V × V) |
10 | 7, 9 | eqeltrdi 2833 | . 2 ⊢ (𝐴 = 𝐵 → 𝐺 ∈ (V × V)) |
11 | funsndifnop.a | . . . 4 ⊢ 𝐴 ∈ V | |
12 | 11, 4, 1 | funsndifnop 7141 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐺 ∈ (V × V)) |
13 | 12 | necon4ai 2964 | . 2 ⊢ (𝐺 ∈ (V × V) → 𝐴 = 𝐵) |
14 | 10, 13 | impbii 208 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝐺 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4620 ⟨cop 4626 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |