MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqopb Structured version   Visualization version   GIF version

Theorem funsneqopb 7127
Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = {⟨𝐴, 𝐵⟩}
Assertion
Ref Expression
funsneqopb (𝐴 = 𝐵𝐺 ∈ (V × V))

Proof of Theorem funsneqopb
StepHypRef Expression
1 funsndifnop.g . . . 4 𝐺 = {⟨𝐴, 𝐵⟩}
2 opeq1 4840 . . . . . 6 (𝐴 = 𝐵 → ⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐵⟩)
32sneqd 4604 . . . . 5 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐵⟩})
4 funsndifnop.b . . . . . 6 𝐵 ∈ V
54snopeqopsnid 5472 . . . . 5 {⟨𝐵, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩
63, 5eqtrdi 2781 . . . 4 (𝐴 = 𝐵 → {⟨𝐴, 𝐵⟩} = ⟨{𝐵}, {𝐵}⟩)
71, 6eqtrid 2777 . . 3 (𝐴 = 𝐵𝐺 = ⟨{𝐵}, {𝐵}⟩)
8 snex 5394 . . . 4 {𝐵} ∈ V
98, 8opelvv 5681 . . 3 ⟨{𝐵}, {𝐵}⟩ ∈ (V × V)
107, 9eqeltrdi 2837 . 2 (𝐴 = 𝐵𝐺 ∈ (V × V))
11 funsndifnop.a . . . 4 𝐴 ∈ V
1211, 4, 1funsndifnop 7126 . . 3 (𝐴𝐵 → ¬ 𝐺 ∈ (V × V))
1312necon4ai 2957 . 2 (𝐺 ∈ (V × V) → 𝐴 = 𝐵)
1410, 13impbii 209 1 (𝐴 = 𝐵𝐺 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator