MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfeq0 Structured version   Visualization version   GIF version

Theorem cfeq0 10270
Description: Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfeq0 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))

Proof of Theorem cfeq0
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10261 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21eqeq1d 2737 . . 3 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅))
3 vex 3463 . . . . . . . . 9 𝑣 ∈ V
4 eqeq1 2739 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑣 = (card‘𝑦)))
54anbi1d 631 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
65exbidv 1921 . . . . . . . . 9 (𝑥 = 𝑣 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
73, 6elab 3658 . . . . . . . 8 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
8 fveq2 6876 . . . . . . . . . . . 12 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘(card‘𝑦)))
9 cardidm 9973 . . . . . . . . . . . 12 (card‘(card‘𝑦)) = (card‘𝑦)
108, 9eqtrdi 2786 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘𝑦))
11 eqeq2 2747 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → ((card‘𝑣) = 𝑣 ↔ (card‘𝑣) = (card‘𝑦)))
1210, 11mpbird 257 . . . . . . . . . 10 (𝑣 = (card‘𝑦) → (card‘𝑣) = 𝑣)
1312adantr 480 . . . . . . . . 9 ((𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
1413exlimiv 1930 . . . . . . . 8 (∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
157, 14sylbi 217 . . . . . . 7 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → (card‘𝑣) = 𝑣)
16 cardon 9958 . . . . . . 7 (card‘𝑣) ∈ On
1715, 16eqeltrrdi 2843 . . . . . 6 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝑣 ∈ On)
1817ssriv 3962 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
19 onint0 7785 . . . . 5 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))}))
2018, 19ax-mp 5 . . . 4 ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
21 0ex 5277 . . . . . 6 ∅ ∈ V
22 eqeq1 2739 . . . . . . . 8 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
2322anbi1d 631 . . . . . . 7 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2423exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
2521, 24elab 3658 . . . . 5 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
26 onss 7779 . . . . . . . . . . 11 (𝐴 ∈ On → 𝐴 ⊆ On)
27 sstr 3967 . . . . . . . . . . . 12 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
2827ancoms 458 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
2926, 28sylan 580 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
30293adant2 1131 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ 𝑦𝐴) → 𝑦 ⊆ On)
31303adant3r 1182 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
32 simp2 1137 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
33 simp3 1138 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))
34 eqcom 2742 . . . . . . . . . . . 12 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
35 vex 3463 . . . . . . . . . . . . . 14 𝑦 ∈ V
36 onssnum 10054 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
3735, 36mpan 690 . . . . . . . . . . . . 13 (𝑦 ⊆ On → 𝑦 ∈ dom card)
38 cardnueq0 9978 . . . . . . . . . . . . 13 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
3937, 38syl 17 . . . . . . . . . . . 12 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4034, 39bitrid 283 . . . . . . . . . . 11 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4140biimpa 476 . . . . . . . . . 10 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
42 sseq1 3984 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
43 rexeq 3301 . . . . . . . . . . . . 13 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
4443ralbidv 3163 . . . . . . . . . . . 12 (𝑦 = ∅ → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4542, 44anbi12d 632 . . . . . . . . . . 11 (𝑦 = ∅ → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) ↔ (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)))
4645biimpa 476 . . . . . . . . . 10 ((𝑦 = ∅ ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
4741, 46sylan 580 . . . . . . . . 9 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (∅ ⊆ 𝐴 ∧ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤))
48 rex0 4335 . . . . . . . . . . . . 13 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4948rgenw 3055 . . . . . . . . . . . 12 𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
50 r19.2z 4470 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
5149, 50mpan2 691 . . . . . . . . . . 11 (𝐴 ≠ ∅ → ∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
52 rexnal 3089 . . . . . . . . . . 11 (∃𝑧𝐴 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤 ↔ ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5351, 52sylib 218 . . . . . . . . . 10 (𝐴 ≠ ∅ → ¬ ∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤)
5453necon4ai 2963 . . . . . . . . 9 (∀𝑧𝐴𝑤 ∈ ∅ 𝑧𝑤𝐴 = ∅)
5547, 54simpl2im 503 . . . . . . . 8 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
5631, 32, 33, 55syl21anc 837 . . . . . . 7 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅)
57563expib 1122 . . . . . 6 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
5857exlimdv 1933 . . . . 5 (𝐴 ∈ On → (∃𝑦(∅ = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → 𝐴 = ∅))
5925, 58biimtrid 242 . . . 4 (𝐴 ∈ On → (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝐴 = ∅))
6020, 59biimtrid 242 . . 3 (𝐴 ∈ On → ( {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} = ∅ → 𝐴 = ∅))
612, 60sylbid 240 . 2 (𝐴 ∈ On → ((cf‘𝐴) = ∅ → 𝐴 = ∅))
62 fveq2 6876 . . 3 (𝐴 = ∅ → (cf‘𝐴) = (cf‘∅))
63 cf0 10265 . . 3 (cf‘∅) = ∅
6462, 63eqtrdi 2786 . 2 (𝐴 = ∅ → (cf‘𝐴) = ∅)
6561, 64impbid1 225 1 (𝐴 ∈ On → ((cf‘𝐴) = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308   cint 4922  dom cdm 5654  Oncon0 6352  cfv 6531  cardccrd 9949  cfccf 9951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8719  df-en 8960  df-dom 8961  df-card 9953  df-cf 9955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator