| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdom1 | Structured version Visualization version GIF version | ||
| Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 12-Dec-2024.) |
| Ref | Expression |
|---|---|
| sdom1 | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8441 | . . . . . . 7 ⊢ 1o = {∅} | |
| 2 | 1 | breq2i 5115 | . . . . . 6 ⊢ (𝐴 ≼ 1o ↔ 𝐴 ≼ {∅}) |
| 3 | brdomi 8931 | . . . . . . 7 ⊢ (𝐴 ≼ {∅} → ∃𝑓 𝑓:𝐴–1-1→{∅}) | |
| 4 | f1cdmsn 7257 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴–1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) | |
| 5 | vex 3451 | . . . . . . . . . . . . 13 ⊢ 𝑥 ∈ V | |
| 6 | 5 | ensn1 8992 | . . . . . . . . . . . 12 ⊢ {𝑥} ≈ 1o |
| 7 | breq1 5110 | . . . . . . . . . . . 12 ⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . . . . . . 11 ⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
| 9 | 8 | exlimiv 1930 | . . . . . . . . . 10 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
| 10 | 4, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝑓:𝐴–1-1→{∅} ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 1o) |
| 11 | 10 | expcom 413 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → (𝑓:𝐴–1-1→{∅} → 𝐴 ≈ 1o)) |
| 12 | 11 | exlimdv 1933 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴–1-1→{∅} → 𝐴 ≈ 1o)) |
| 13 | 3, 12 | syl5 34 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → (𝐴 ≼ {∅} → 𝐴 ≈ 1o)) |
| 14 | 2, 13 | biimtrid 242 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 ≼ 1o → 𝐴 ≈ 1o)) |
| 15 | iman 401 | . . . . 5 ⊢ ((𝐴 ≼ 1o → 𝐴 ≈ 1o) ↔ ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) | |
| 16 | 14, 15 | sylib 218 | . . . 4 ⊢ (𝐴 ≠ ∅ → ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) |
| 17 | brsdom 8946 | . . . 4 ⊢ (𝐴 ≺ 1o ↔ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) | |
| 18 | 16, 17 | sylnibr 329 | . . 3 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o) |
| 19 | 18 | necon4ai 2956 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
| 20 | 1n0 8452 | . . . 4 ⊢ 1o ≠ ∅ | |
| 21 | 1oex 8444 | . . . . 5 ⊢ 1o ∈ V | |
| 22 | 21 | 0sdom 9072 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
| 23 | 20, 22 | mpbir 231 | . . 3 ⊢ ∅ ≺ 1o |
| 24 | breq1 5110 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
| 25 | 23, 24 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
| 26 | 19, 25 | impbii 209 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ≠ wne 2925 ∅c0 4296 {csn 4589 class class class wbr 5107 –1-1→wf1 6508 1oc1o 8427 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: modom 9191 frgpcyg 21483 |
| Copyright terms: Public domain | W3C validator |