![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom1 | Structured version Visualization version GIF version |
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 12-Dec-2024.) |
Ref | Expression |
---|---|
sdom1 | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8469 | . . . . . . 7 ⊢ 1o = {∅} | |
2 | 1 | breq2i 5155 | . . . . . 6 ⊢ (𝐴 ≼ 1o ↔ 𝐴 ≼ {∅}) |
3 | brdomi 8950 | . . . . . . 7 ⊢ (𝐴 ≼ {∅} → ∃𝑓 𝑓:𝐴–1-1→{∅}) | |
4 | f1cdmsn 7276 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴–1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) | |
5 | vex 3478 | . . . . . . . . . . . . 13 ⊢ 𝑥 ∈ V | |
6 | 5 | ensn1 9013 | . . . . . . . . . . . 12 ⊢ {𝑥} ≈ 1o |
7 | breq1 5150 | . . . . . . . . . . . 12 ⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o)) | |
8 | 6, 7 | mpbiri 257 | . . . . . . . . . . 11 ⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
9 | 8 | exlimiv 1933 | . . . . . . . . . 10 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
10 | 4, 9 | syl 17 | . . . . . . . . 9 ⊢ ((𝑓:𝐴–1-1→{∅} ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 1o) |
11 | 10 | expcom 414 | . . . . . . . 8 ⊢ (𝐴 ≠ ∅ → (𝑓:𝐴–1-1→{∅} → 𝐴 ≈ 1o)) |
12 | 11 | exlimdv 1936 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴–1-1→{∅} → 𝐴 ≈ 1o)) |
13 | 3, 12 | syl5 34 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → (𝐴 ≼ {∅} → 𝐴 ≈ 1o)) |
14 | 2, 13 | biimtrid 241 | . . . . 5 ⊢ (𝐴 ≠ ∅ → (𝐴 ≼ 1o → 𝐴 ≈ 1o)) |
15 | iman 402 | . . . . 5 ⊢ ((𝐴 ≼ 1o → 𝐴 ≈ 1o) ↔ ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) | |
16 | 14, 15 | sylib 217 | . . . 4 ⊢ (𝐴 ≠ ∅ → ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) |
17 | brsdom 8967 | . . . 4 ⊢ (𝐴 ≺ 1o ↔ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o)) | |
18 | 16, 17 | sylnibr 328 | . . 3 ⊢ (𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o) |
19 | 18 | necon4ai 2972 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
20 | 1n0 8484 | . . . 4 ⊢ 1o ≠ ∅ | |
21 | 1oex 8472 | . . . . 5 ⊢ 1o ∈ V | |
22 | 21 | 0sdom 9103 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
23 | 20, 22 | mpbir 230 | . . 3 ⊢ ∅ ≺ 1o |
24 | breq1 5150 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
25 | 23, 24 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
26 | 19, 25 | impbii 208 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ≠ wne 2940 ∅c0 4321 {csn 4627 class class class wbr 5147 –1-1→wf1 6537 1oc1o 8455 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-1o 8462 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: modom 9240 frgpcyg 21120 |
Copyright terms: Public domain | W3C validator |