Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdom1 | Structured version Visualization version GIF version |
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
sdom1 | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8886 | . . . . 5 ⊢ (1o ≼ 𝐴 → ¬ 𝐴 ≺ 1o) | |
2 | 1 | con2i 139 | . . . 4 ⊢ (𝐴 ≺ 1o → ¬ 1o ≼ 𝐴) |
3 | 0sdom1dom 9020 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
4 | 2, 3 | sylnibr 329 | . . 3 ⊢ (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴) |
5 | relsdom 8740 | . . . . 5 ⊢ Rel ≺ | |
6 | 5 | brrelex1i 5643 | . . . 4 ⊢ (𝐴 ≺ 1o → 𝐴 ∈ V) |
7 | 0sdomg 8891 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
8 | 7 | necon2bbid 2987 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
10 | 4, 9 | mpbird 256 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
11 | 1n0 8318 | . . . 4 ⊢ 1o ≠ ∅ | |
12 | 1oex 8307 | . . . . 5 ⊢ 1o ∈ V | |
13 | 12 | 0sdom 8894 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
14 | 11, 13 | mpbir 230 | . . 3 ⊢ ∅ ≺ 1o |
15 | breq1 5077 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
16 | 14, 15 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
17 | 10, 16 | impbii 208 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 class class class wbr 5074 1oc1o 8290 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 |
This theorem is referenced by: modom 9023 frgpcyg 20781 |
Copyright terms: Public domain | W3C validator |