MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1 Structured version   Visualization version   GIF version

Theorem sdom1 9239
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5354, ax-un 7719. (Revised by BTernaryTau, 12-Dec-2024.)
Assertion
Ref Expression
sdom1 (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8469 . . . . . . 7 1o = {∅}
21breq2i 5147 . . . . . 6 (𝐴 ≼ 1o𝐴 ≼ {∅})
3 brdomi 8951 . . . . . . 7 (𝐴 ≼ {∅} → ∃𝑓 𝑓:𝐴1-1→{∅})
4 f1cdmsn 7273 . . . . . . . . . 10 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
5 vex 3470 . . . . . . . . . . . . 13 𝑥 ∈ V
65ensn1 9014 . . . . . . . . . . . 12 {𝑥} ≈ 1o
7 breq1 5142 . . . . . . . . . . . 12 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
86, 7mpbiri 258 . . . . . . . . . . 11 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
98exlimiv 1925 . . . . . . . . . 10 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
104, 9syl 17 . . . . . . . . 9 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 1o)
1110expcom 413 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
1211exlimdv 1928 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
133, 12syl5 34 . . . . . 6 (𝐴 ≠ ∅ → (𝐴 ≼ {∅} → 𝐴 ≈ 1o))
142, 13biimtrid 241 . . . . 5 (𝐴 ≠ ∅ → (𝐴 ≼ 1o𝐴 ≈ 1o))
15 iman 401 . . . . 5 ((𝐴 ≼ 1o𝐴 ≈ 1o) ↔ ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1614, 15sylib 217 . . . 4 (𝐴 ≠ ∅ → ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
17 brsdom 8968 . . . 4 (𝐴 ≺ 1o ↔ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1816, 17sylnibr 329 . . 3 (𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o)
1918necon4ai 2964 . 2 (𝐴 ≺ 1o𝐴 = ∅)
20 1n0 8484 . . . 4 1o ≠ ∅
21 1oex 8472 . . . . 5 1o ∈ V
22210sdom 9104 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
2320, 22mpbir 230 . . 3 ∅ ≺ 1o
24 breq1 5142 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
2523, 24mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
2619, 25impbii 208 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wne 2932  c0 4315  {csn 4621   class class class wbr 5139  1-1wf1 6531  1oc1o 8455  cen 8933  cdom 8934  csdm 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1o 8462  df-en 8937  df-dom 8938  df-sdom 8939
This theorem is referenced by:  modom  9241  frgpcyg  21457
  Copyright terms: Public domain W3C validator