MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1 Structured version   Visualization version   GIF version

Theorem sdom1 9022
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
sdom1 (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1
StepHypRef Expression
1 domnsym 8886 . . . . 5 (1o𝐴 → ¬ 𝐴 ≺ 1o)
21con2i 139 . . . 4 (𝐴 ≺ 1o → ¬ 1o𝐴)
3 0sdom1dom 9020 . . . 4 (∅ ≺ 𝐴 ↔ 1o𝐴)
42, 3sylnibr 329 . . 3 (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴)
5 relsdom 8740 . . . . 5 Rel ≺
65brrelex1i 5643 . . . 4 (𝐴 ≺ 1o𝐴 ∈ V)
7 0sdomg 8891 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
87necon2bbid 2987 . . . 4 (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
96, 8syl 17 . . 3 (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
104, 9mpbird 256 . 2 (𝐴 ≺ 1o𝐴 = ∅)
11 1n0 8318 . . . 4 1o ≠ ∅
12 1oex 8307 . . . . 5 1o ∈ V
13120sdom 8894 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
1411, 13mpbir 230 . . 3 ∅ ≺ 1o
15 breq1 5077 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
1614, 15mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
1710, 16impbii 208 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074  1oc1o 8290  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  modom  9023  frgpcyg  20781
  Copyright terms: Public domain W3C validator