MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1 Structured version   Visualization version   GIF version

Theorem sdom1 9238
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5362, ax-un 7721. (Revised by BTernaryTau, 12-Dec-2024.)
Assertion
Ref Expression
sdom1 (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8469 . . . . . . 7 1o = {∅}
21breq2i 5155 . . . . . 6 (𝐴 ≼ 1o𝐴 ≼ {∅})
3 brdomi 8950 . . . . . . 7 (𝐴 ≼ {∅} → ∃𝑓 𝑓:𝐴1-1→{∅})
4 f1cdmsn 7276 . . . . . . . . . 10 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
5 vex 3478 . . . . . . . . . . . . 13 𝑥 ∈ V
65ensn1 9013 . . . . . . . . . . . 12 {𝑥} ≈ 1o
7 breq1 5150 . . . . . . . . . . . 12 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
86, 7mpbiri 257 . . . . . . . . . . 11 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
98exlimiv 1933 . . . . . . . . . 10 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
104, 9syl 17 . . . . . . . . 9 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 1o)
1110expcom 414 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
1211exlimdv 1936 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
133, 12syl5 34 . . . . . 6 (𝐴 ≠ ∅ → (𝐴 ≼ {∅} → 𝐴 ≈ 1o))
142, 13biimtrid 241 . . . . 5 (𝐴 ≠ ∅ → (𝐴 ≼ 1o𝐴 ≈ 1o))
15 iman 402 . . . . 5 ((𝐴 ≼ 1o𝐴 ≈ 1o) ↔ ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1614, 15sylib 217 . . . 4 (𝐴 ≠ ∅ → ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
17 brsdom 8967 . . . 4 (𝐴 ≺ 1o ↔ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1816, 17sylnibr 328 . . 3 (𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o)
1918necon4ai 2972 . 2 (𝐴 ≺ 1o𝐴 = ∅)
20 1n0 8484 . . . 4 1o ≠ ∅
21 1oex 8472 . . . . 5 1o ∈ V
22210sdom 9103 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
2320, 22mpbir 230 . . 3 ∅ ≺ 1o
24 breq1 5150 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
2523, 24mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
2619, 25impbii 208 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wne 2940  c0 4321  {csn 4627   class class class wbr 5147  1-1wf1 6537  1oc1o 8455  cen 8932  cdom 8933  csdm 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-en 8936  df-dom 8937  df-sdom 8938
This theorem is referenced by:  modom  9240  frgpcyg  21120
  Copyright terms: Public domain W3C validator