Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdom1 | Structured version Visualization version GIF version |
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
sdom1 | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8839 | . . . . 5 ⊢ (1o ≼ 𝐴 → ¬ 𝐴 ≺ 1o) | |
2 | 1 | con2i 139 | . . . 4 ⊢ (𝐴 ≺ 1o → ¬ 1o ≼ 𝐴) |
3 | 0sdom1dom 8950 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
4 | 2, 3 | sylnibr 328 | . . 3 ⊢ (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴) |
5 | relsdom 8698 | . . . . 5 ⊢ Rel ≺ | |
6 | 5 | brrelex1i 5634 | . . . 4 ⊢ (𝐴 ≺ 1o → 𝐴 ∈ V) |
7 | 0sdomg 8842 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
8 | 7 | necon2bbid 2986 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
10 | 4, 9 | mpbird 256 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
11 | 1n0 8286 | . . . 4 ⊢ 1o ≠ ∅ | |
12 | 1oex 8280 | . . . . 5 ⊢ 1o ∈ V | |
13 | 12 | 0sdom 8844 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
14 | 11, 13 | mpbir 230 | . . 3 ⊢ ∅ ≺ 1o |
15 | breq1 5073 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
16 | 14, 15 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
17 | 10, 16 | impbii 208 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 1oc1o 8260 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: modom 8953 frgpcyg 20693 |
Copyright terms: Public domain | W3C validator |