MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1 Structured version   Visualization version   GIF version

Theorem sdom1 9134
Description: A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5301, ax-un 7668. (Revised by BTernaryTau, 12-Dec-2024.)
Assertion
Ref Expression
sdom1 (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df1o2 8392 . . . . . . 7 1o = {∅}
21breq2i 5097 . . . . . 6 (𝐴 ≼ 1o𝐴 ≼ {∅})
3 brdomi 8882 . . . . . . 7 (𝐴 ≼ {∅} → ∃𝑓 𝑓:𝐴1-1→{∅})
4 f1cdmsn 7216 . . . . . . . . . 10 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
5 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
65ensn1 8943 . . . . . . . . . . . 12 {𝑥} ≈ 1o
7 breq1 5092 . . . . . . . . . . . 12 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
86, 7mpbiri 258 . . . . . . . . . . 11 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
98exlimiv 1931 . . . . . . . . . 10 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
104, 9syl 17 . . . . . . . . 9 ((𝑓:𝐴1-1→{∅} ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 1o)
1110expcom 413 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
1211exlimdv 1934 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑓 𝑓:𝐴1-1→{∅} → 𝐴 ≈ 1o))
133, 12syl5 34 . . . . . 6 (𝐴 ≠ ∅ → (𝐴 ≼ {∅} → 𝐴 ≈ 1o))
142, 13biimtrid 242 . . . . 5 (𝐴 ≠ ∅ → (𝐴 ≼ 1o𝐴 ≈ 1o))
15 iman 401 . . . . 5 ((𝐴 ≼ 1o𝐴 ≈ 1o) ↔ ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1614, 15sylib 218 . . . 4 (𝐴 ≠ ∅ → ¬ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
17 brsdom 8897 . . . 4 (𝐴 ≺ 1o ↔ (𝐴 ≼ 1o ∧ ¬ 𝐴 ≈ 1o))
1816, 17sylnibr 329 . . 3 (𝐴 ≠ ∅ → ¬ 𝐴 ≺ 1o)
1918necon4ai 2959 . 2 (𝐴 ≺ 1o𝐴 = ∅)
20 1n0 8403 . . . 4 1o ≠ ∅
21 1oex 8395 . . . . 5 1o ∈ V
22210sdom 9021 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
2320, 22mpbir 231 . . 3 ∅ ≺ 1o
24 breq1 5092 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
2523, 24mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
2619, 25impbii 209 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wne 2928  c0 4280  {csn 4573   class class class wbr 5089  1-1wf1 6478  1oc1o 8378  cen 8866  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  modom  9135  frgpcyg  21510
  Copyright terms: Public domain W3C validator