MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2959
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2932 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 235 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2932
This theorem is referenced by:  necon4ai  2962  iotanul2  6512  fvbr0  6916  peano5  7898  1stnpr  8001  2ndnpr  8002  1st2val  8025  2nd2val  8026  eceqoveq  8845  mapprc  8853  ixp0  8954  cnvfi  9199  setind  9757  hashfun  14459  hashf1lem2  14478  iswrdi  14539  ffz0iswrd  14562  dvdsrval  20334  thlle  21683  thlleOLD  21684  konigsberg  30223  hatomistici  32328  esumrnmpt2  34010  mppsval  35518  grpods  42136  unitscyglem4  42140  setindtr  42981  fourierdlem72  46138  afvpcfv0  47104
  Copyright terms: Public domain W3C validator