| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: necon4ai 2962 iotanul2 6512 fvbr0 6916 peano5 7898 1stnpr 8001 2ndnpr 8002 1st2val 8025 2nd2val 8026 eceqoveq 8845 mapprc 8853 ixp0 8954 cnvfi 9199 setind 9757 hashfun 14459 hashf1lem2 14478 iswrdi 14539 ffz0iswrd 14562 dvdsrval 20334 thlle 21683 thlleOLD 21684 konigsberg 30223 hatomistici 32328 esumrnmpt2 34010 mppsval 35518 grpods 42136 unitscyglem4 42140 setindtr 42981 fourierdlem72 46138 afvpcfv0 47104 |
| Copyright terms: Public domain | W3C validator |