MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2953
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2926 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 235 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon4ai  2956  iotanul2  6459  fvbr0  6853  peano5  7833  1stnpr  7935  2ndnpr  7936  1st2val  7959  2nd2val  7960  eceqoveq  8756  mapprc  8764  ixp0  8865  cnvfi  9100  setind  9649  hashfun  14362  hashf1lem2  14381  iswrdi  14442  ffz0iswrd  14466  dvdsrval  20264  thlle  21622  konigsberg  30219  hatomistici  32324  esumrnmpt2  34037  setindregs  35067  mppsval  35547  grpods  42170  unitscyglem4  42174  setindtr  43000  fourierdlem72  46163  afvpcfv0  47134
  Copyright terms: Public domain W3C validator