![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2935 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ≠ wne 2934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2935 |
This theorem is referenced by: necon4ai 2966 iotanul2 6507 fvbr0 6914 peano5 7881 peano5OLD 7882 1stnpr 7978 2ndnpr 7979 1st2val 8002 2nd2val 8003 eceqoveq 8818 mapprc 8826 ixp0 8927 cnvfi 9182 setind 9731 hashfun 14402 hashf1lem2 14423 iswrdi 14474 ffz0iswrd 14497 dvdsrval 20263 thlle 21591 thlleOLD 21592 konigsberg 30019 hatomistici 32124 esumrnmpt2 33596 mppsval 35091 setindtr 42341 fourierdlem72 45466 afvpcfv0 46426 |
Copyright terms: Public domain | W3C validator |