| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4ai 2956 iotanul2 6481 fvbr0 6887 peano5 7869 1stnpr 7972 2ndnpr 7973 1st2val 7996 2nd2val 7997 eceqoveq 8795 mapprc 8803 ixp0 8904 cnvfi 9140 setind 9687 hashfun 14402 hashf1lem2 14421 iswrdi 14482 ffz0iswrd 14506 dvdsrval 20270 thlle 21606 konigsberg 30186 hatomistici 32291 esumrnmpt2 34058 mppsval 35559 grpods 42182 unitscyglem4 42186 setindtr 43013 fourierdlem72 46176 afvpcfv0 47147 |
| Copyright terms: Public domain | W3C validator |