MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2972
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2944 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  necon4ai  2975  fvbr0  6793  peano5  7730  peano5OLD  7731  1stnpr  7824  2ndnpr  7825  1st2val  7848  2nd2val  7849  eceqoveq  8598  mapprc  8606  ixp0  8706  cnvfi  8950  setind  9501  hashfun  14162  hashf1lem2  14180  iswrdi  14231  ffz0iswrd  14254  dvdsrval  19897  thlle  20913  thlleOLD  20914  konigsberg  28629  hatomistici  30732  esumrnmpt2  32044  mppsval  33542  sn-iotanul  40202  setindtr  40854  fourierdlem72  43700  afvpcfv0  44616
  Copyright terms: Public domain W3C validator