MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2953
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2926 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 235 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon4ai  2956  iotanul2  6481  fvbr0  6887  peano5  7869  1stnpr  7972  2ndnpr  7973  1st2val  7996  2nd2val  7997  eceqoveq  8795  mapprc  8803  ixp0  8904  cnvfi  9140  setind  9687  hashfun  14402  hashf1lem2  14421  iswrdi  14482  ffz0iswrd  14506  dvdsrval  20270  thlle  21606  konigsberg  30186  hatomistici  32291  esumrnmpt2  34058  mppsval  35559  grpods  42182  unitscyglem4  42186  setindtr  43013  fourierdlem72  46176  afvpcfv0  47147
  Copyright terms: Public domain W3C validator