MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2970
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2942 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2942
This theorem is referenced by:  necon4ai  2973  iotanul2  6514  fvbr0  6921  peano5  7884  peano5OLD  7885  1stnpr  7979  2ndnpr  7980  1st2val  8003  2nd2val  8004  eceqoveq  8816  mapprc  8824  ixp0  8925  cnvfi  9180  setind  9729  hashfun  14397  hashf1lem2  14417  iswrdi  14468  ffz0iswrd  14491  dvdsrval  20175  thlle  21251  thlleOLD  21252  konigsberg  29510  hatomistici  31615  esumrnmpt2  33066  mppsval  34563  setindtr  41763  fourierdlem72  44894  afvpcfv0  45854
  Copyright terms: Public domain W3C validator