![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon4ai 2970 iotanul2 6533 fvbr0 6936 peano5 7916 1stnpr 8017 2ndnpr 8018 1st2val 8041 2nd2val 8042 eceqoveq 8861 mapprc 8869 ixp0 8970 cnvfi 9215 setind 9772 hashfun 14473 hashf1lem2 14492 iswrdi 14553 ffz0iswrd 14576 dvdsrval 20378 thlle 21734 thlleOLD 21735 konigsberg 30286 hatomistici 32391 esumrnmpt2 34049 mppsval 35557 grpods 42176 unitscyglem4 42180 setindtr 43013 fourierdlem72 46134 afvpcfv0 47096 |
Copyright terms: Public domain | W3C validator |