| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon4ai 2960 iotanul2 6462 fvbr0 6858 peano5 7832 1stnpr 7934 2ndnpr 7935 1st2val 7958 2nd2val 7959 eceqoveq 8755 mapprc 8763 ixp0 8865 cnvfi 9096 setind 9648 hashfun 14351 hashf1lem2 14370 iswrdi 14431 ffz0iswrd 14455 dvdsrval 20288 thlle 21643 konigsberg 30258 hatomistici 32363 esumrnmpt2 34153 setindregs 35200 mppsval 35688 grpods 42360 unitscyglem4 42364 setindtr 43181 fourierdlem72 46338 afvpcfv0 47308 |
| Copyright terms: Public domain | W3C validator |