![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2938 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2938 |
This theorem is referenced by: necon4ai 2969 iotanul2 6523 fvbr0 6931 peano5 7907 peano5OLD 7908 1stnpr 8005 2ndnpr 8006 1st2val 8029 2nd2val 8030 eceqoveq 8849 mapprc 8857 ixp0 8958 cnvfi 9213 setind 9767 hashfun 14438 hashf1lem2 14459 iswrdi 14510 ffz0iswrd 14533 dvdsrval 20314 thlle 21644 thlleOLD 21645 konigsberg 30095 hatomistici 32200 esumrnmpt2 33728 mppsval 35223 setindtr 42494 fourierdlem72 45613 afvpcfv0 46573 |
Copyright terms: Public domain | W3C validator |