![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon4ai 2972 iotanul2 6513 fvbr0 6920 peano5 7886 peano5OLD 7887 1stnpr 7981 2ndnpr 7982 1st2val 8005 2nd2val 8006 eceqoveq 8818 mapprc 8826 ixp0 8927 cnvfi 9182 setind 9731 hashfun 14399 hashf1lem2 14419 iswrdi 14470 ffz0iswrd 14493 dvdsrval 20179 thlle 21257 thlleOLD 21258 konigsberg 29548 hatomistici 31653 esumrnmpt2 33135 mppsval 34632 setindtr 41845 fourierdlem72 44973 afvpcfv0 45933 |
Copyright terms: Public domain | W3C validator |