MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2956
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2929 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 235 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2929
This theorem is referenced by:  necon4ai  2959  iotanul2  6449  fvbr0  6844  peano5  7818  1stnpr  7920  2ndnpr  7921  1st2val  7944  2nd2val  7945  eceqoveq  8741  mapprc  8749  ixp0  8850  cnvfi  9080  setind  9632  hashfun  14339  hashf1lem2  14358  iswrdi  14419  ffz0iswrd  14443  dvdsrval  20274  thlle  21629  konigsberg  30229  hatomistici  32334  esumrnmpt2  34073  setindregs  35120  mppsval  35608  grpods  42227  unitscyglem4  42231  setindtr  43057  fourierdlem72  46216  afvpcfv0  47177
  Copyright terms: Public domain W3C validator