| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon4ai 2959 iotanul2 6449 fvbr0 6844 peano5 7818 1stnpr 7920 2ndnpr 7921 1st2val 7944 2nd2val 7945 eceqoveq 8741 mapprc 8749 ixp0 8850 cnvfi 9080 setind 9632 hashfun 14339 hashf1lem2 14358 iswrdi 14419 ffz0iswrd 14443 dvdsrval 20274 thlle 21629 konigsberg 30229 hatomistici 32334 esumrnmpt2 34073 setindregs 35120 mppsval 35608 grpods 42227 unitscyglem4 42231 setindtr 43057 fourierdlem72 46216 afvpcfv0 47177 |
| Copyright terms: Public domain | W3C validator |