MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2972
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2944 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  necon4ai  2975  fvbr0  6801  peano5  7740  peano5OLD  7741  1stnpr  7835  2ndnpr  7836  1st2val  7859  2nd2val  7860  eceqoveq  8611  mapprc  8619  ixp0  8719  cnvfi  8963  setind  9492  hashfun  14152  hashf1lem2  14170  iswrdi  14221  ffz0iswrd  14244  dvdsrval  19887  thlle  20903  thlleOLD  20904  konigsberg  28621  hatomistici  30724  esumrnmpt2  32036  mppsval  33534  sn-iotanul  40194  setindtr  40846  fourierdlem72  43719  afvpcfv0  44638
  Copyright terms: Public domain W3C validator