MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2969
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2941 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2941
This theorem is referenced by:  necon4ai  2972  iotanul2  6513  fvbr0  6920  peano5  7886  peano5OLD  7887  1stnpr  7981  2ndnpr  7982  1st2val  8005  2nd2val  8006  eceqoveq  8818  mapprc  8826  ixp0  8927  cnvfi  9182  setind  9731  hashfun  14399  hashf1lem2  14419  iswrdi  14470  ffz0iswrd  14493  dvdsrval  20179  thlle  21257  thlleOLD  21258  konigsberg  29548  hatomistici  31653  esumrnmpt2  33135  mppsval  34632  setindtr  41845  fourierdlem72  44973  afvpcfv0  45933
  Copyright terms: Public domain W3C validator