![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: necon4ai 2973 iotanul2 6514 fvbr0 6921 peano5 7884 peano5OLD 7885 1stnpr 7979 2ndnpr 7980 1st2val 8003 2nd2val 8004 eceqoveq 8816 mapprc 8824 ixp0 8925 cnvfi 9180 setind 9729 hashfun 14397 hashf1lem2 14417 iswrdi 14468 ffz0iswrd 14491 dvdsrval 20175 thlle 21251 thlleOLD 21252 konigsberg 29510 hatomistici 31615 esumrnmpt2 33066 mppsval 34563 setindtr 41763 fourierdlem72 44894 afvpcfv0 45854 |
Copyright terms: Public domain | W3C validator |