![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon4ai 2978 iotanul2 6543 fvbr0 6949 peano5 7932 peano5OLD 7933 1stnpr 8034 2ndnpr 8035 1st2val 8058 2nd2val 8059 eceqoveq 8880 mapprc 8888 ixp0 8989 cnvfi 9243 setind 9803 hashfun 14486 hashf1lem2 14505 iswrdi 14566 ffz0iswrd 14589 dvdsrval 20387 thlle 21739 thlleOLD 21740 konigsberg 30289 hatomistici 32394 esumrnmpt2 34032 mppsval 35540 grpods 42151 unitscyglem4 42155 setindtr 42981 fourierdlem72 46099 afvpcfv0 47061 |
Copyright terms: Public domain | W3C validator |