MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2967
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2939 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 235 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2939
This theorem is referenced by:  necon4ai  2970  iotanul2  6533  fvbr0  6936  peano5  7916  1stnpr  8017  2ndnpr  8018  1st2val  8041  2nd2val  8042  eceqoveq  8861  mapprc  8869  ixp0  8970  cnvfi  9215  setind  9772  hashfun  14473  hashf1lem2  14492  iswrdi  14553  ffz0iswrd  14576  dvdsrval  20378  thlle  21734  thlleOLD  21735  konigsberg  30286  hatomistici  32391  esumrnmpt2  34049  mppsval  35557  grpods  42176  unitscyglem4  42180  setindtr  43013  fourierdlem72  46134  afvpcfv0  47096
  Copyright terms: Public domain W3C validator