Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon4ai 2975 fvbr0 6801 peano5 7740 peano5OLD 7741 1stnpr 7835 2ndnpr 7836 1st2val 7859 2nd2val 7860 eceqoveq 8611 mapprc 8619 ixp0 8719 cnvfi 8963 setind 9492 hashfun 14152 hashf1lem2 14170 iswrdi 14221 ffz0iswrd 14244 dvdsrval 19887 thlle 20903 thlleOLD 20904 konigsberg 28621 hatomistici 30724 esumrnmpt2 32036 mppsval 33534 sn-iotanul 40194 setindtr 40846 fourierdlem72 43719 afvpcfv0 44638 |
Copyright terms: Public domain | W3C validator |