| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1bi | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1bi.1 | ⊢ (𝐴 ≠ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| necon1bi | ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | necon1bi.1 | . . 3 ⊢ (𝐴 ≠ 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (¬ 𝐴 = 𝐵 → 𝜑) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon4ai 2956 iotanul2 6459 fvbr0 6853 peano5 7833 1stnpr 7935 2ndnpr 7936 1st2val 7959 2nd2val 7960 eceqoveq 8756 mapprc 8764 ixp0 8865 cnvfi 9100 setind 9649 hashfun 14362 hashf1lem2 14381 iswrdi 14442 ffz0iswrd 14466 dvdsrval 20264 thlle 21622 konigsberg 30219 hatomistici 32324 esumrnmpt2 34037 setindregs 35067 mppsval 35547 grpods 42170 unitscyglem4 42174 setindtr 43000 fourierdlem72 46163 afvpcfv0 47134 |
| Copyright terms: Public domain | W3C validator |