MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2966
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2938 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝜑)
43con1i 147 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wne 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2938
This theorem is referenced by:  necon4ai  2969  iotanul2  6523  fvbr0  6931  peano5  7907  peano5OLD  7908  1stnpr  8005  2ndnpr  8006  1st2val  8029  2nd2val  8030  eceqoveq  8849  mapprc  8857  ixp0  8958  cnvfi  9213  setind  9767  hashfun  14438  hashf1lem2  14459  iswrdi  14510  ffz0iswrd  14533  dvdsrval  20314  thlle  21644  thlleOLD  21645  konigsberg  30095  hatomistici  32200  esumrnmpt2  33728  mppsval  35223  setindtr  42494  fourierdlem72  45613  afvpcfv0  46573
  Copyright terms: Public domain W3C validator