Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmsn0el | Structured version Visualization version GIF version |
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnn0 6099 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
2 | 0nelelxp 5615 | . . 3 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
3 | 1, 2 | sylbir 234 | . 2 ⊢ (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴) |
4 | 3 | necon4ai 2974 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 |
This theorem is referenced by: dmsnsnsn 6112 |
Copyright terms: Public domain | W3C validator |