|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dmsn0el | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmsnn0 6227 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
| 2 | 0nelelxp 5720 | . . 3 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴) | 
| 4 | 3 | necon4ai 2972 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 {csn 4626 × cxp 5683 dom cdm 5685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 | 
| This theorem is referenced by: dmsnsnsn 6240 | 
| Copyright terms: Public domain | W3C validator |