MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsn0el Structured version   Visualization version   GIF version

Theorem dmsn0el 6186
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
StepHypRef Expression
1 dmsnn0 6182 . . 3 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 0nelelxp 5675 . . 3 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
31, 2sylbir 235 . 2 (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴)
43necon4ai 2957 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  {csn 4591   × cxp 5638  dom cdm 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-dm 5650
This theorem is referenced by:  dmsnsnsn  6195
  Copyright terms: Public domain W3C validator