MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsn0el Structured version   Visualization version   GIF version

Theorem dmsn0el 6164
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
StepHypRef Expression
1 dmsnn0 6160 . . 3 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 0nelelxp 5654 . . 3 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
31, 2sylbir 235 . 2 (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴)
43necon4ai 2959 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4282  {csn 4575   × cxp 5617  dom cdm 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-dm 5629
This theorem is referenced by:  dmsnsnsn  6173
  Copyright terms: Public domain W3C validator