| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsn0el | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
| Ref | Expression |
|---|---|
| dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnn0 6182 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
| 2 | 0nelelxp 5675 | . . 3 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
| 3 | 1, 2 | sylbir 235 | . 2 ⊢ (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴) |
| 4 | 3 | necon4ai 2957 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4298 {csn 4591 × cxp 5638 dom cdm 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-dm 5650 |
| This theorem is referenced by: dmsnsnsn 6195 |
| Copyright terms: Public domain | W3C validator |