![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsn0el | Structured version Visualization version GIF version |
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.) |
Ref | Expression |
---|---|
dmsn0el | ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnn0 5856 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
2 | 0nelelxp 5392 | . . 3 ⊢ (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴) | |
3 | 1, 2 | sylbir 227 | . 2 ⊢ (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴) |
4 | 3 | necon4ai 3000 | 1 ⊢ (∅ ∈ 𝐴 → dom {𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∅c0 4141 {csn 4398 × cxp 5355 dom cdm 5357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-dm 5367 |
This theorem is referenced by: dmsnsnsn 5869 |
Copyright terms: Public domain | W3C validator |