MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsn0el Structured version   Visualization version   GIF version

Theorem dmsn0el 6114
Description: The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
dmsn0el (∅ ∈ 𝐴 → dom {𝐴} = ∅)

Proof of Theorem dmsn0el
StepHypRef Expression
1 dmsnn0 6110 . . 3 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
2 0nelelxp 5624 . . 3 (𝐴 ∈ (V × V) → ¬ ∅ ∈ 𝐴)
31, 2sylbir 234 . 2 (dom {𝐴} ≠ ∅ → ¬ ∅ ∈ 𝐴)
43necon4ai 2975 1 (∅ ∈ 𝐴 → dom {𝐴} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256  {csn 4561   × cxp 5587  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-dm 5599
This theorem is referenced by:  dmsnsnsn  6123
  Copyright terms: Public domain W3C validator