MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcssprc Structured version   Visualization version   GIF version

Theorem prcssprc 5326
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
prcssprc ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)

Proof of Theorem prcssprc
StepHypRef Expression
1 ssexg 5324 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
21ex 414 . . 3 (𝐴𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
32nelcon3d 3051 . 2 (𝐴𝐵 → (𝐴 ∉ V → 𝐵 ∉ V))
43imp 408 1 ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wnel 3047  Vcvv 3475  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nel 3048  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  usgrprc  28523  rgrusgrprc  28846  rgrprc  28848  fsetprcnexALT  45772
  Copyright terms: Public domain W3C validator