| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prcssprc | Structured version Visualization version GIF version | ||
| Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| prcssprc | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5305 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
| 3 | 2 | nelcon3d 3039 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∉ V → 𝐵 ∉ V)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∉ wnel 3035 Vcvv 3464 ⊆ wss 3933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nel 3036 df-rab 3421 df-v 3466 df-in 3940 df-ss 3950 |
| This theorem is referenced by: usgrprc 29226 rgrusgrprc 29550 rgrprc 29552 fsetprcnexALT 47016 |
| Copyright terms: Public domain | W3C validator |