MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcssprc Structured version   Visualization version   GIF version

Theorem prcssprc 5249
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
prcssprc ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)

Proof of Theorem prcssprc
StepHypRef Expression
1 ssexg 5247 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
21ex 413 . . 3 (𝐴𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
32nelcon3d 3061 . 2 (𝐴𝐵 → (𝐴 ∉ V → 𝐵 ∉ V))
43imp 407 1 ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wnel 3049  Vcvv 3432  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nel 3050  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  usgrprc  27633  rgrusgrprc  27956  rgrprc  27958  fsetprcnexALT  44556
  Copyright terms: Public domain W3C validator