MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcssprc Structured version   Visualization version   GIF version

Theorem prcssprc 5265
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
prcssprc ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)

Proof of Theorem prcssprc
StepHypRef Expression
1 ssexg 5261 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
21ex 412 . . 3 (𝐴𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
32nelcon3d 3036 . 2 (𝐴𝐵 → (𝐴 ∉ V → 𝐵 ∉ V))
43imp 406 1 ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wnel 3032  Vcvv 3436  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919
This theorem is referenced by:  usgrprc  29242  rgrusgrprc  29566  rgrprc  29568  fsetprcnexALT  47092
  Copyright terms: Public domain W3C validator