Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcssprc | Structured version Visualization version GIF version |
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
prcssprc | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5247 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | ex 413 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
3 | 2 | nelcon3d 3061 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∉ V → 𝐵 ∉ V)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∉ wnel 3049 Vcvv 3432 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: usgrprc 27633 rgrusgrprc 27956 rgrprc 27958 fsetprcnexALT 44556 |
Copyright terms: Public domain | W3C validator |