MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcssprc Structured version   Visualization version   GIF version

Theorem prcssprc 5309
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
prcssprc ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)

Proof of Theorem prcssprc
StepHypRef Expression
1 ssexg 5305 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
21ex 412 . . 3 (𝐴𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
32nelcon3d 3039 . 2 (𝐴𝐵 → (𝐴 ∉ V → 𝐵 ∉ V))
43imp 406 1 ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wnel 3035  Vcvv 3464  wss 3933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nel 3036  df-rab 3421  df-v 3466  df-in 3940  df-ss 3950
This theorem is referenced by:  usgrprc  29226  rgrusgrprc  29550  rgrprc  29552  fsetprcnexALT  47016
  Copyright terms: Public domain W3C validator