Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcssprc | Structured version Visualization version GIF version |
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
prcssprc | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5242 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
3 | 2 | nelcon3d 3060 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∉ V → 𝐵 ∉ V)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∉ wnel 3048 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nel 3049 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: usgrprc 27536 rgrusgrprc 27859 rgrprc 27861 fsetprcnexALT 44443 |
Copyright terms: Public domain | W3C validator |