MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmgm Structured version   Visualization version   GIF version

Theorem isnmgm 18577
Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
isnmgm ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)

Proof of Theorem isnmgm
StepHypRef Expression
1 mgmcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . . 6 = (+g𝑀)
31, 2mgmcl 18576 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
433expib 1122 . . . 4 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
54com12 32 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑀 ∈ Mgm → (𝑋 𝑌) ∈ 𝐵))
65nelcon3d 3035 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∉ 𝐵𝑀 ∉ Mgm))
763impia 1117 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3031  cfv 6519  (class class class)co 7394  Basecbs 17185  +gcplusg 17226  Mgmcmgm 18571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-nel 3032  df-ral 3047  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-mgm 18573
This theorem is referenced by:  oddinmgm  48092
  Copyright terms: Public domain W3C validator