MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmgm Structured version   Visualization version   GIF version

Theorem isnmgm 18245
Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
Hypotheses
Ref Expression
mgmcl.b 𝐵 = (Base‘𝑀)
mgmcl.o = (+g𝑀)
Assertion
Ref Expression
isnmgm ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)

Proof of Theorem isnmgm
StepHypRef Expression
1 mgmcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mgmcl.o . . . . . 6 = (+g𝑀)
31, 2mgmcl 18244 . . . . 5 ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
433expib 1120 . . . 4 (𝑀 ∈ Mgm → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵))
54com12 32 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑀 ∈ Mgm → (𝑋 𝑌) ∈ 𝐵))
65nelcon3d 3060 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) ∉ 𝐵𝑀 ∉ Mgm))
763impia 1115 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wnel 3048  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mgmcmgm 18239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241
This theorem is referenced by:  oddinmgm  45257
  Copyright terms: Public domain W3C validator