![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnmgm | Structured version Visualization version GIF version |
Description: A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.) |
Ref | Expression |
---|---|
mgmcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmcl.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
isnmgm | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | mgmcl.o | . . . . . 6 ⊢ ⚬ = (+g‘𝑀) | |
3 | 1, 2 | mgmcl 18563 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵) |
4 | 3 | 3expib 1122 | . . . 4 ⊢ (𝑀 ∈ Mgm → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
5 | 4 | com12 32 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀 ∈ Mgm → (𝑋 ⚬ 𝑌) ∈ 𝐵)) |
6 | 5 | nelcon3d 3050 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ⚬ 𝑌) ∉ 𝐵 → 𝑀 ∉ Mgm)) |
7 | 6 | 3impia 1117 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ⚬ 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Mgmcmgm 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-nel 3047 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-mgm 18560 |
This theorem is referenced by: oddinmgm 46575 |
Copyright terms: Public domain | W3C validator |