|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fsetprcnex | Structured version Visualization version GIF version | ||
| Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8895 for 𝐴 ∉ V, fset0 8894 for 𝐴 = ∅, and fsetex 8896 for 𝐵 ∈ V, see also fsetexb 8904. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| fsetprcnex | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0 4353 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 ∈ 𝐴) | |
| 2 | feq1 6716 | . . . . . . . . . 10 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
| 3 | 2 | cbvabv 2812 | . . . . . . . . 9 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = {𝑚 ∣ 𝑚:𝐴⟶𝐵} | 
| 4 | fveq1 6905 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑛 → (𝑔‘𝑎) = (𝑛‘𝑎)) | |
| 5 | 4 | cbvmptv 5255 | . . . . . . . . 9 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)) = (𝑛 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑛‘𝑎)) | 
| 6 | 3, 5 | fsetfocdm 8901 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵) | 
| 7 | focdmex 7980 | . . . . . . . 8 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → ((𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵 → 𝐵 ∈ V)) | |
| 8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → 𝐵 ∈ V)) | 
| 9 | 8 | nelcon3d 3050 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) | 
| 10 | 9 | expcom 413 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) | 
| 11 | 10 | exlimiv 1930 | . . . 4 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) | 
| 12 | 1, 11 | sylbi 217 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) | 
| 13 | 12 | impcom 407 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) | 
| 14 | 13 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 {cab 2714 ≠ wne 2940 ∉ wnel 3046 Vcvv 3480 ∅c0 4333 ↦ cmpt 5225 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 | 
| This theorem is referenced by: fsetcdmex 8903 fsetexb 8904 | 
| Copyright terms: Public domain | W3C validator |