MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetprcnex Structured version   Visualization version   GIF version

Theorem fsetprcnex 8608
Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓𝑓:𝐴𝐵} is a set, see fsetdmprc0 8601 for 𝐴 ∉ V, fset0 8600 for 𝐴 = ∅, and fsetex 8602 for 𝐵 ∈ V, see also fsetexb 8610. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.)
Assertion
Ref Expression
fsetprcnex (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnex
Dummy variables 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎𝐴)
2 feq1 6565 . . . . . . . . . 10 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
32cbvabv 2812 . . . . . . . . 9 {𝑓𝑓:𝐴𝐵} = {𝑚𝑚:𝐴𝐵}
4 fveq1 6755 . . . . . . . . . 10 (𝑔 = 𝑛 → (𝑔𝑎) = (𝑛𝑎))
54cbvmptv 5183 . . . . . . . . 9 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)) = (𝑛 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑛𝑎))
63, 5fsetfocdm 8607 . . . . . . . 8 ((𝐴𝑉𝑎𝐴) → (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵)
7 fornex 7772 . . . . . . . 8 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵𝐵 ∈ V))
86, 7syl5com 31 . . . . . . 7 ((𝐴𝑉𝑎𝐴) → ({𝑓𝑓:𝐴𝐵} ∈ V → 𝐵 ∈ V))
98nelcon3d 3060 . . . . . 6 ((𝐴𝑉𝑎𝐴) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
109expcom 413 . . . . 5 (𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1110exlimiv 1934 . . . 4 (∃𝑎 𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
121, 11sylbi 216 . . 3 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1312impcom 407 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1413imp 406 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  {cab 2715  wne 2942  wnel 3048  Vcvv 3422  c0 4253  cmpt 5153  wf 6414  ontowfo 6416  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  fsetcdmex  8609  fsetexb  8610
  Copyright terms: Public domain W3C validator