Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetprcnex | Structured version Visualization version GIF version |
Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8601 for 𝐴 ∉ V, fset0 8600 for 𝐴 = ∅, and fsetex 8602 for 𝐵 ∈ V, see also fsetexb 8610. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) |
Ref | Expression |
---|---|
fsetprcnex | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 ∈ 𝐴) | |
2 | feq1 6565 | . . . . . . . . . 10 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
3 | 2 | cbvabv 2812 | . . . . . . . . 9 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = {𝑚 ∣ 𝑚:𝐴⟶𝐵} |
4 | fveq1 6755 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑛 → (𝑔‘𝑎) = (𝑛‘𝑎)) | |
5 | 4 | cbvmptv 5183 | . . . . . . . . 9 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)) = (𝑛 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑛‘𝑎)) |
6 | 3, 5 | fsetfocdm 8607 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵) |
7 | fornex 7772 | . . . . . . . 8 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → ((𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵 → 𝐵 ∈ V)) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → 𝐵 ∈ V)) |
9 | 8 | nelcon3d 3060 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) |
10 | 9 | expcom 413 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
11 | 10 | exlimiv 1934 | . . . 4 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
12 | 1, 11 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
13 | 12 | impcom 407 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) |
14 | 13 | imp 406 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∉ wnel 3048 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fsetcdmex 8609 fsetexb 8610 |
Copyright terms: Public domain | W3C validator |