MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetprcnex Structured version   Visualization version   GIF version

Theorem fsetprcnex 8835
Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓𝑓:𝐴𝐵} is a set, see fsetdmprc0 8828 for 𝐴 ∉ V, fset0 8827 for 𝐴 = ∅, and fsetex 8829 for 𝐵 ∈ V, see also fsetexb 8837. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.)
Assertion
Ref Expression
fsetprcnex (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnex
Dummy variables 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎𝐴)
2 feq1 6666 . . . . . . . . . 10 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
32cbvabv 2799 . . . . . . . . 9 {𝑓𝑓:𝐴𝐵} = {𝑚𝑚:𝐴𝐵}
4 fveq1 6857 . . . . . . . . . 10 (𝑔 = 𝑛 → (𝑔𝑎) = (𝑛𝑎))
54cbvmptv 5211 . . . . . . . . 9 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)) = (𝑛 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑛𝑎))
63, 5fsetfocdm 8834 . . . . . . . 8 ((𝐴𝑉𝑎𝐴) → (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵)
7 focdmex 7934 . . . . . . . 8 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵𝐵 ∈ V))
86, 7syl5com 31 . . . . . . 7 ((𝐴𝑉𝑎𝐴) → ({𝑓𝑓:𝐴𝐵} ∈ V → 𝐵 ∈ V))
98nelcon3d 3033 . . . . . 6 ((𝐴𝑉𝑎𝐴) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
109expcom 413 . . . . 5 (𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1110exlimiv 1930 . . . 4 (∃𝑎 𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
121, 11sylbi 217 . . 3 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1312impcom 407 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1413imp 406 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  {cab 2707  wne 2925  wnel 3029  Vcvv 3447  c0 4296  cmpt 5188  wf 6507  ontowfo 6509  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  fsetcdmex  8836  fsetexb  8837
  Copyright terms: Public domain W3C validator