MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetprcnex Structured version   Visualization version   GIF version

Theorem fsetprcnex 8789
Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓𝑓:𝐴𝐵} is a set, see fsetdmprc0 8782 for 𝐴 ∉ V, fset0 8781 for 𝐴 = ∅, and fsetex 8783 for 𝐵 ∈ V, see also fsetexb 8791. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.)
Assertion
Ref Expression
fsetprcnex (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝑉(𝑓)

Proof of Theorem fsetprcnex
Dummy variables 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4304 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎𝐴)
2 feq1 6630 . . . . . . . . . 10 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
32cbvabv 2799 . . . . . . . . 9 {𝑓𝑓:𝐴𝐵} = {𝑚𝑚:𝐴𝐵}
4 fveq1 6821 . . . . . . . . . 10 (𝑔 = 𝑛 → (𝑔𝑎) = (𝑛𝑎))
54cbvmptv 5196 . . . . . . . . 9 (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)) = (𝑛 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑛𝑎))
63, 5fsetfocdm 8788 . . . . . . . 8 ((𝐴𝑉𝑎𝐴) → (𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵)
7 focdmex 7891 . . . . . . . 8 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝑔 ∈ {𝑓𝑓:𝐴𝐵} ↦ (𝑔𝑎)):{𝑓𝑓:𝐴𝐵}–onto𝐵𝐵 ∈ V))
86, 7syl5com 31 . . . . . . 7 ((𝐴𝑉𝑎𝐴) → ({𝑓𝑓:𝐴𝐵} ∈ V → 𝐵 ∈ V))
98nelcon3d 3033 . . . . . 6 ((𝐴𝑉𝑎𝐴) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
109expcom 413 . . . . 5 (𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1110exlimiv 1930 . . . 4 (∃𝑎 𝑎𝐴 → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
121, 11sylbi 217 . . 3 (𝐴 ≠ ∅ → (𝐴𝑉 → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V)))
1312impcom 407 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1413imp 406 1 (((𝐴𝑉𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  {cab 2707  wne 2925  wnel 3029  Vcvv 3436  c0 4284  cmpt 5173  wf 6478  ontowfo 6480  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  fsetcdmex  8790  fsetexb  8791
  Copyright terms: Public domain W3C validator