![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetprcnex | Structured version Visualization version GIF version |
Description: The class of all functions from a nonempty set 𝐴 into a proper class 𝐵 is not a set. If one of the preconditions is not fufilled, then {𝑓 ∣ 𝑓:𝐴⟶𝐵} is a set, see fsetdmprc0 8848 for 𝐴 ∉ V, fset0 8847 for 𝐴 = ∅, and fsetex 8849 for 𝐵 ∈ V, see also fsetexb 8857. (Contributed by AV, 14-Sep-2024.) (Proof shortened by BJ, 15-Sep-2024.) |
Ref | Expression |
---|---|
fsetprcnex | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4346 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎 ∈ 𝐴) | |
2 | feq1 6698 | . . . . . . . . . 10 ⊢ (𝑓 = 𝑚 → (𝑓:𝐴⟶𝐵 ↔ 𝑚:𝐴⟶𝐵)) | |
3 | 2 | cbvabv 2805 | . . . . . . . . 9 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} = {𝑚 ∣ 𝑚:𝐴⟶𝐵} |
4 | fveq1 6890 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑛 → (𝑔‘𝑎) = (𝑛‘𝑎)) | |
5 | 4 | cbvmptv 5261 | . . . . . . . . 9 ⊢ (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)) = (𝑛 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑛‘𝑎)) |
6 | 3, 5 | fsetfocdm 8854 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵) |
7 | focdmex 7941 | . . . . . . . 8 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → ((𝑔 ∈ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↦ (𝑔‘𝑎)):{𝑓 ∣ 𝑓:𝐴⟶𝐵}–onto→𝐵 → 𝐵 ∈ V)) | |
8 | 6, 7 | syl5com 31 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V → 𝐵 ∈ V)) |
9 | 8 | nelcon3d 3050 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) |
10 | 9 | expcom 414 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
11 | 10 | exlimiv 1933 | . . . 4 ⊢ (∃𝑎 𝑎 ∈ 𝐴 → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
12 | 1, 11 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝐴 ∈ 𝑉 → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V))) |
13 | 12 | impcom 408 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V)) |
14 | 13 | imp 407 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 ∉ wnel 3046 Vcvv 3474 ∅c0 4322 ↦ cmpt 5231 ⟶wf 6539 –onto→wfo 6541 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: fsetcdmex 8856 fsetexb 8857 |
Copyright terms: Public domain | W3C validator |