| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusfreseq | Structured version Visualization version GIF version | ||
| Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
| plusfreseq.2 | ⊢ + = (+g‘𝑀) |
| plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
| Ref | Expression |
|---|---|
| mgmplusfreseq | ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
| 3 | 1, 2 | mgmplusf 18583 | . . . 4 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| 4 | frn 6697 | . . . 4 ⊢ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 → ran ⨣ ⊆ 𝐵) | |
| 5 | ssel 3942 | . . . . 5 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∈ ran ⨣ → ∅ ∈ 𝐵)) | |
| 6 | 5 | nelcon3d 3034 | . . . 4 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
| 7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran ⨣ ) |
| 9 | plusfreseq.2 | . . 3 ⊢ + = (+g‘𝑀) | |
| 10 | 1, 9, 2 | plusfreseq 48142 | . 2 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| 11 | 8, 10 | syl 17 | 1 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ⊆ wss 3916 ∅c0 4298 × cxp 5638 ran crn 5641 ↾ cres 5642 ⟶wf 6509 ‘cfv 6513 Basecbs 17185 +gcplusg 17226 +𝑓cplusf 18570 Mgmcmgm 18571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-plusf 18572 df-mgm 18573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |