![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusfreseq | ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | mgmplusf 18664 | . . . 4 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
4 | frn 6738 | . . . 4 ⊢ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 → ran ⨣ ⊆ 𝐵) | |
5 | ssel 3989 | . . . . 5 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∈ ran ⨣ → ∅ ∈ 𝐵)) | |
6 | 5 | nelcon3d 3046 | . . . 4 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
8 | 7 | imp 406 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran ⨣ ) |
9 | plusfreseq.2 | . . 3 ⊢ + = (+g‘𝑀) | |
10 | 1, 9, 2 | plusfreseq 47925 | . 2 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
11 | 8, 10 | syl 17 | 1 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ∉ wnel 3042 ⊆ wss 3963 ∅c0 4339 × cxp 5681 ran crn 5684 ↾ cres 5685 ⟶wf 6554 ‘cfv 6558 Basecbs 17234 +gcplusg 17287 +𝑓cplusf 18651 Mgmcmgm 18652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-1st 8007 df-2nd 8008 df-plusf 18653 df-mgm 18654 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |