| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusfreseq | Structured version Visualization version GIF version | ||
| Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
| plusfreseq.2 | ⊢ + = (+g‘𝑀) |
| plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
| Ref | Expression |
|---|---|
| mgmplusfreseq | ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
| 3 | 1, 2 | mgmplusf 18577 | . . . 4 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
| 4 | frn 6695 | . . . 4 ⊢ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 → ran ⨣ ⊆ 𝐵) | |
| 5 | ssel 3940 | . . . . 5 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∈ ran ⨣ → ∅ ∈ 𝐵)) | |
| 6 | 5 | nelcon3d 3033 | . . . 4 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
| 7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran ⨣ ) |
| 9 | plusfreseq.2 | . . 3 ⊢ + = (+g‘𝑀) | |
| 10 | 1, 9, 2 | plusfreseq 48152 | . 2 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| 11 | 8, 10 | syl 17 | 1 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ⊆ wss 3914 ∅c0 4296 × cxp 5636 ran crn 5639 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 Basecbs 17179 +gcplusg 17220 +𝑓cplusf 18564 Mgmcmgm 18565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-plusf 18566 df-mgm 18567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |