Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusfreseq Structured version   Visualization version   GIF version

Theorem mgmplusfreseq 42798
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusfreseq ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem mgmplusfreseq
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2mgmplusf 17641 . . . 4 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
4 frn 6299 . . . 4 ( :(𝐵 × 𝐵)⟶𝐵 → ran 𝐵)
5 ssel 3815 . . . . 5 (ran 𝐵 → (∅ ∈ ran → ∅ ∈ 𝐵))
65nelcon3d 3087 . . . 4 (ran 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ))
73, 4, 63syl 18 . . 3 (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ))
87imp 397 . 2 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran )
9 plusfreseq.2 . . 3 + = (+g𝑀)
101, 9, 2plusfreseq 42797 . 2 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
118, 10syl 17 1 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wnel 3075  wss 3792  c0 4141   × cxp 5355  ran crn 5358  cres 5359  wf 6133  cfv 6137  Basecbs 16259  +gcplusg 16342  +𝑓cplusf 17629  Mgmcmgm 17630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-plusf 17631  df-mgm 17632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator