Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmplusfreseq Structured version   Visualization version   GIF version

Theorem mgmplusfreseq 48150
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1 𝐵 = (Base‘𝑀)
plusfreseq.2 + = (+g𝑀)
plusfreseq.3 = (+𝑓𝑀)
Assertion
Ref Expression
mgmplusfreseq ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )

Proof of Theorem mgmplusfreseq
StepHypRef Expression
1 plusfreseq.1 . . . . 5 𝐵 = (Base‘𝑀)
2 plusfreseq.3 . . . . 5 = (+𝑓𝑀)
31, 2mgmplusf 18542 . . . 4 (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
4 frn 6663 . . . 4 ( :(𝐵 × 𝐵)⟶𝐵 → ran 𝐵)
5 ssel 3931 . . . . 5 (ran 𝐵 → (∅ ∈ ran → ∅ ∈ 𝐵))
65nelcon3d 3033 . . . 4 (ran 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ))
73, 4, 63syl 18 . . 3 (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ))
87imp 406 . 2 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran )
9 plusfreseq.2 . . 3 + = (+g𝑀)
101, 9, 2plusfreseq 48149 . 2 (∅ ∉ ran → ( + ↾ (𝐵 × 𝐵)) = )
118, 10syl 17 1 ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  wss 3905  c0 4286   × cxp 5621  ran crn 5624  cres 5625  wf 6482  cfv 6486  Basecbs 17138  +gcplusg 17179  +𝑓cplusf 18529  Mgmcmgm 18530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-plusf 18531  df-mgm 18532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator