Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusfreseq | ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | mgmplusf 18251 | . . . 4 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
4 | frn 6591 | . . . 4 ⊢ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 → ran ⨣ ⊆ 𝐵) | |
5 | ssel 3910 | . . . . 5 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∈ ran ⨣ → ∅ ∈ 𝐵)) | |
6 | 5 | nelcon3d 3060 | . . . 4 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
8 | 7 | imp 406 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran ⨣ ) |
9 | plusfreseq.2 | . . 3 ⊢ + = (+g‘𝑀) | |
10 | 1, 9, 2 | plusfreseq 45214 | . 2 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
11 | 8, 10 | syl 17 | 1 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ⊆ wss 3883 ∅c0 4253 × cxp 5578 ran crn 5581 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 Basecbs 16840 +gcplusg 16888 +𝑓cplusf 18238 Mgmcmgm 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-plusf 18240 df-mgm 18241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |