![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmplusfreseq | Structured version Visualization version GIF version |
Description: If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
plusfreseq.1 | ⊢ 𝐵 = (Base‘𝑀) |
plusfreseq.2 | ⊢ + = (+g‘𝑀) |
plusfreseq.3 | ⊢ ⨣ = (+𝑓‘𝑀) |
Ref | Expression |
---|---|
mgmplusfreseq | ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plusfreseq.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | plusfreseq.3 | . . . . 5 ⊢ ⨣ = (+𝑓‘𝑀) | |
3 | 1, 2 | mgmplusf 18512 | . . . 4 ⊢ (𝑀 ∈ Mgm → ⨣ :(𝐵 × 𝐵)⟶𝐵) |
4 | frn 6676 | . . . 4 ⊢ ( ⨣ :(𝐵 × 𝐵)⟶𝐵 → ran ⨣ ⊆ 𝐵) | |
5 | ssel 3938 | . . . . 5 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∈ ran ⨣ → ∅ ∈ 𝐵)) | |
6 | 5 | nelcon3d 3058 | . . . 4 ⊢ (ran ⨣ ⊆ 𝐵 → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑀 ∈ Mgm → (∅ ∉ 𝐵 → ∅ ∉ ran ⨣ )) |
8 | 7 | imp 408 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ∅ ∉ ran ⨣ ) |
9 | plusfreseq.2 | . . 3 ⊢ + = (+g‘𝑀) | |
10 | 1, 9, 2 | plusfreseq 46152 | . 2 ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
11 | 8, 10 | syl 17 | 1 ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∉ wnel 3046 ⊆ wss 3911 ∅c0 4283 × cxp 5632 ran crn 5635 ↾ cres 5636 ⟶wf 6493 ‘cfv 6497 Basecbs 17088 +gcplusg 17138 +𝑓cplusf 18499 Mgmcmgm 18500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-plusf 18501 df-mgm 18502 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |