![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3053. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3053 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3053 |
This theorem is referenced by: ru 3802 ruOLD 3803 prneli 4678 ruv 9671 ruALT 9672 cardprc 10049 pnfnre 11331 mnfnre 11333 eirr 16253 sqrt2irr 16297 lcmfnnval 16671 lcmf0 16681 smndex1n0mnd 18947 nsmndex1 18948 zringndrg 21502 topnex 23024 zfbas 23925 aaliou3 26411 finsumvtxdg2sstep 29585 xrge0iifcnv 33879 bj-0nel1 36919 bj-1nel0 36920 bj-0nelsngl 36937 ruvALT 42624 fmtnoinf 47410 fmtno5nprm 47457 4fppr1 47609 0nodd 47893 2nodd 47895 1neven 47961 2zrngnring 47981 |
Copyright terms: Public domain | W3C validator |