| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3033. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3033 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∉ wnel 3032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3033 |
| This theorem is referenced by: ru 3734 ruOLD 3735 prneli 4606 ruv 9491 ruALT 9492 cardprc 9873 pnfnre 11153 mnfnre 11155 eirr 16114 sqrt2irr 16158 lcmfnnval 16535 lcmf0 16545 smndex1n0mnd 18820 nsmndex1 18821 zringndrg 21405 topnex 22911 zfbas 23811 aaliou3 26286 finsumvtxdg2sstep 29528 2sqr3nconstr 33794 cos9thpinconstr 33804 xrge0iifcnv 33946 bj-0nel1 36997 bj-1nel0 36998 bj-0nelsngl 37015 ruvALT 42761 fmtnoinf 47635 fmtno5nprm 47682 4fppr1 47834 gpg5edgnedg 48229 0nodd 48269 2nodd 48271 1neven 48337 2zrngnring 48357 fonex 48966 posnex 49079 prsnex 49080 |
| Copyright terms: Public domain | W3C validator |