![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3089. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3089 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 232 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2079 ∉ wnel 3088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-nel 3089 |
This theorem is referenced by: ru 3700 prneli 4494 ruv 8902 ruALT 8903 cardprc 9244 pnfnre 10517 mnfnre 10519 wrdlndmOLD 13714 eirr 15379 sqrt2irr 15423 lcmfnnval 15785 lcmf0 15795 zringndrg 20307 topnex 21276 zfbas 22176 aaliou3 24611 finsumvtxdg2sstep 27002 xrge0iifcnv 30749 bj-0nel1 33782 bj-1nel0 33783 bj-0nelsngl 33834 fmtnoinf 43134 fmtno5nprm 43181 4fppr1 43336 0nodd 43513 2nodd 43515 1neven 43635 2zrngnring 43655 |
Copyright terms: Public domain | W3C validator |