Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3049. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3049 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3049 |
This theorem is referenced by: ru 3710 prneli 4588 ruv 9291 ruALT 9292 cardprc 9669 pnfnre 10947 mnfnre 10949 eirr 15842 sqrt2irr 15886 lcmfnnval 16257 lcmf0 16267 smndex1n0mnd 18466 nsmndex1 18467 zringndrg 20602 topnex 22054 zfbas 22955 aaliou3 25416 finsumvtxdg2sstep 27819 xrge0iifcnv 31785 bj-0nel1 35070 bj-1nel0 35071 bj-0nelsngl 35088 ruvALT 40096 fmtnoinf 44876 fmtno5nprm 44923 4fppr1 45075 0nodd 45252 2nodd 45254 1neven 45378 2zrngnring 45398 |
Copyright terms: Public domain | W3C validator |