| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3031. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3031 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3031 |
| This theorem is referenced by: ru 3754 ruOLD 3755 prneli 4623 ruv 9562 ruALT 9563 cardprc 9940 pnfnre 11222 mnfnre 11224 eirr 16180 sqrt2irr 16224 lcmfnnval 16601 lcmf0 16611 smndex1n0mnd 18846 nsmndex1 18847 zringndrg 21385 topnex 22890 zfbas 23790 aaliou3 26266 finsumvtxdg2sstep 29484 2sqr3nconstr 33778 cos9thpinconstr 33788 xrge0iifcnv 33930 bj-0nel1 36948 bj-1nel0 36949 bj-0nelsngl 36966 ruvALT 42664 fmtnoinf 47541 fmtno5nprm 47588 4fppr1 47740 0nodd 48162 2nodd 48164 1neven 48230 2zrngnring 48250 fonex 48859 posnex 48972 prsnex 48973 |
| Copyright terms: Public domain | W3C validator |