| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: ru 3751 ruOLD 3752 prneli 4620 ruv 9555 ruALT 9556 cardprc 9933 pnfnre 11215 mnfnre 11217 eirr 16173 sqrt2irr 16217 lcmfnnval 16594 lcmf0 16604 smndex1n0mnd 18839 nsmndex1 18840 zringndrg 21378 topnex 22883 zfbas 23783 aaliou3 26259 finsumvtxdg2sstep 29477 2sqr3nconstr 33771 cos9thpinconstr 33781 xrge0iifcnv 33923 bj-0nel1 36941 bj-1nel0 36942 bj-0nelsngl 36959 ruvALT 42657 fmtnoinf 47537 fmtno5nprm 47584 4fppr1 47736 0nodd 48158 2nodd 48160 1neven 48226 2zrngnring 48246 fonex 48855 posnex 48968 prsnex 48969 |
| Copyright terms: Public domain | W3C validator |