![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3044. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3044 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 ∉ wnel 3043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-nel 3044 |
This theorem is referenced by: ru 3788 ruOLD 3789 prneli 4660 ruv 9639 ruALT 9640 cardprc 10017 pnfnre 11299 mnfnre 11301 eirr 16237 sqrt2irr 16281 lcmfnnval 16657 lcmf0 16667 smndex1n0mnd 18937 nsmndex1 18938 zringndrg 21496 topnex 23018 zfbas 23919 aaliou3 26407 finsumvtxdg2sstep 29581 xrge0iifcnv 33893 bj-0nel1 36935 bj-1nel0 36936 bj-0nelsngl 36953 ruvALT 42655 fmtnoinf 47460 fmtno5nprm 47507 4fppr1 47659 0nodd 48013 2nodd 48015 1neven 48081 2zrngnring 48101 |
Copyright terms: Public domain | W3C validator |