MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelir Structured version   Visualization version   GIF version

Theorem nelir 3052
Description: Inference associated with df-nel 3050. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nelir.1 ¬ 𝐴𝐵
Assertion
Ref Expression
nelir 𝐴𝐵

Proof of Theorem nelir
StepHypRef Expression
1 nelir.1 . 2 ¬ 𝐴𝐵
2 df-nel 3050 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
31, 2mpbir 230 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  wnel 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nel 3050
This theorem is referenced by:  ru  3715  prneli  4591  ruv  9361  ruALT  9362  cardprc  9738  pnfnre  11016  mnfnre  11018  eirr  15914  sqrt2irr  15958  lcmfnnval  16329  lcmf0  16339  smndex1n0mnd  18551  nsmndex1  18552  zringndrg  20690  topnex  22146  zfbas  23047  aaliou3  25511  finsumvtxdg2sstep  27916  xrge0iifcnv  31883  bj-0nel1  35143  bj-1nel0  35144  bj-0nelsngl  35161  ruvALT  40168  fmtnoinf  44988  fmtno5nprm  45035  4fppr1  45187  0nodd  45364  2nodd  45366  1neven  45490  2zrngnring  45510
  Copyright terms: Public domain W3C validator