| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: ru 3740 ruOLD 3741 prneli 4608 ruv 9497 ruALT 9498 cardprc 9876 pnfnre 11156 mnfnre 11158 eirr 16114 sqrt2irr 16158 lcmfnnval 16535 lcmf0 16545 smndex1n0mnd 18786 nsmndex1 18787 zringndrg 21375 topnex 22881 zfbas 23781 aaliou3 26257 finsumvtxdg2sstep 29495 2sqr3nconstr 33754 cos9thpinconstr 33764 xrge0iifcnv 33906 bj-0nel1 36937 bj-1nel0 36938 bj-0nelsngl 36955 ruvALT 42652 fmtnoinf 47530 fmtno5nprm 47577 4fppr1 47729 gpg5edgnedg 48124 0nodd 48164 2nodd 48166 1neven 48232 2zrngnring 48252 fonex 48861 posnex 48974 prsnex 48975 |
| Copyright terms: Public domain | W3C validator |