| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3037. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3037 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ∉ wnel 3036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3037 |
| This theorem is referenced by: ru 3763 ruOLD 3764 prneli 4632 ruv 9614 ruALT 9615 cardprc 9992 pnfnre 11274 mnfnre 11276 eirr 16221 sqrt2irr 16265 lcmfnnval 16641 lcmf0 16651 smndex1n0mnd 18888 nsmndex1 18889 zringndrg 21427 topnex 22932 zfbas 23832 aaliou3 26309 finsumvtxdg2sstep 29475 2sqr3nconstr 33761 xrge0iifcnv 33910 bj-0nel1 36917 bj-1nel0 36918 bj-0nelsngl 36935 ruvALT 42639 fmtnoinf 47498 fmtno5nprm 47545 4fppr1 47697 0nodd 48093 2nodd 48095 1neven 48161 2zrngnring 48181 fonex 48790 posnex 48902 prsnex 48903 |
| Copyright terms: Public domain | W3C validator |