Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3050. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3050 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∉ wnel 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3050 |
This theorem is referenced by: ru 3715 prneli 4591 ruv 9361 ruALT 9362 cardprc 9738 pnfnre 11016 mnfnre 11018 eirr 15914 sqrt2irr 15958 lcmfnnval 16329 lcmf0 16339 smndex1n0mnd 18551 nsmndex1 18552 zringndrg 20690 topnex 22146 zfbas 23047 aaliou3 25511 finsumvtxdg2sstep 27916 xrge0iifcnv 31883 bj-0nel1 35143 bj-1nel0 35144 bj-0nelsngl 35161 ruvALT 40168 fmtnoinf 44988 fmtno5nprm 45035 4fppr1 45187 0nodd 45364 2nodd 45366 1neven 45490 2zrngnring 45510 |
Copyright terms: Public domain | W3C validator |