Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version |
Description: Inference associated with df-nel 3048. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
nelir | ⊢ 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
2 | df-nel 3048 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∉ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∉ wnel 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3048 |
This theorem is referenced by: ru 3729 prneli 4607 ruv 9463 ruALT 9464 cardprc 9841 pnfnre 11121 mnfnre 11123 eirr 16013 sqrt2irr 16057 lcmfnnval 16426 lcmf0 16436 smndex1n0mnd 18647 nsmndex1 18648 zringndrg 20795 topnex 22251 zfbas 23152 aaliou3 25616 finsumvtxdg2sstep 28204 xrge0iifcnv 32179 bj-0nel1 35278 bj-1nel0 35279 bj-0nelsngl 35296 ruvALT 40476 fmtnoinf 45406 fmtno5nprm 45453 4fppr1 45605 0nodd 45782 2nodd 45784 1neven 45908 2zrngnring 45928 |
Copyright terms: Public domain | W3C validator |