| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelir | Structured version Visualization version GIF version | ||
| Description: Inference associated with df-nel 3030. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nelir.1 | ⊢ ¬ 𝐴 ∈ 𝐵 |
| Ref | Expression |
|---|---|
| nelir | ⊢ 𝐴 ∉ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelir.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐵 | |
| 2 | df-nel 3030 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴 ∉ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∉ wnel 3029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nel 3030 |
| This theorem is referenced by: ru 3748 ruOLD 3749 prneli 4616 ruv 9531 ruALT 9532 cardprc 9909 pnfnre 11191 mnfnre 11193 eirr 16149 sqrt2irr 16193 lcmfnnval 16570 lcmf0 16580 smndex1n0mnd 18821 nsmndex1 18822 zringndrg 21410 topnex 22916 zfbas 23816 aaliou3 26292 finsumvtxdg2sstep 29530 2sqr3nconstr 33764 cos9thpinconstr 33774 xrge0iifcnv 33916 bj-0nel1 36934 bj-1nel0 36935 bj-0nelsngl 36952 ruvALT 42650 fmtnoinf 47530 fmtno5nprm 47577 4fppr1 47729 0nodd 48151 2nodd 48153 1neven 48219 2zrngnring 48239 fonex 48848 posnex 48961 prsnex 48962 |
| Copyright terms: Public domain | W3C validator |