| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| neleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| neleq12d | ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neleq12d.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eleq12d 2828 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
| 4 | 3 | notbid 318 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐵 ∈ 𝐷)) |
| 5 | df-nel 3037 | . 2 ⊢ (𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶) | |
| 6 | df-nel 3037 | . 2 ⊢ (𝐵 ∉ 𝐷 ↔ ¬ 𝐵 ∈ 𝐷) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-nel 3037 |
| This theorem is referenced by: neleq1 3042 neleq2 3043 ru 3763 uhgrspan1 29282 nbgrnself 29338 nbgrnself2 29339 finsumvtxdg2size 29530 fsetsnprcnex 47084 isubgr3stgrlem6 47983 |
| Copyright terms: Public domain | W3C validator |