MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nesymir Structured version   Visualization version   GIF version

Theorem nesymir 3005
Description: Inference associated with nesym 3003. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.)
Hypothesis
Ref Expression
nesymir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
nesymir 𝐵𝐴

Proof of Theorem nesymir
StepHypRef Expression
1 nesymir.1 . . 3 ¬ 𝐴 = 𝐵
21neir 2949 . 2 𝐴𝐵
32necomi 3001 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wne 2946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947
This theorem is referenced by:  relowlpssretop  37332
  Copyright terms: Public domain W3C validator