| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymir | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2982. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| nesymir | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymir.1 | . . 3 ⊢ ¬ 𝐴 = 𝐵 | |
| 2 | 1 | neir 2929 | . 2 ⊢ 𝐴 ≠ 𝐵 |
| 3 | 2 | necomi 2980 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: relowlpssretop 37347 |
| Copyright terms: Public domain | W3C validator |