Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesymir | Structured version Visualization version GIF version |
Description: Inference associated with nesym 3000. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
nesymir | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymir.1 | . . 3 ⊢ ¬ 𝐴 = 𝐵 | |
2 | 1 | neir 2946 | . 2 ⊢ 𝐴 ≠ 𝐵 |
3 | 2 | necomi 2998 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: relowlpssretop 35535 |
Copyright terms: Public domain | W3C validator |