![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version |
Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3abii 2993 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: 0nelopabOLD 5587 ord1eln01 8552 ord2eln012 8553 fiming 9567 wemapsolem 9619 nn01to3 13006 xrltlen 13208 sgnn 15143 isprm3 16730 lspsncv0 21171 uvcvv0 21833 fvmptnn04if 22876 chfacfisf 22881 chfacfisfcpmat 22882 trfbas 23873 fbunfip 23898 trfil2 23916 iundisj2 25603 nosupbnd2lem1 27778 noinfbnd2lem1 27793 elnns2 28362 pthdlem2lem 29803 fusgr2wsp2nb 30366 iundisj2f 32612 iundisj2fi 32802 cvmscld 35241 poimirlem25 37605 hlrelat5N 39358 cmpfiiin 42653 gneispace 44096 iblcncfioo 45899 fourierdlem82 46109 elprneb 46944 fzopredsuc 47238 iccpartiltu 47296 |
Copyright terms: Public domain | W3C validator |