| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2736 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2971 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: ord1eln01 8421 ord2eln012 8422 fiming 9409 wemapsolem 9461 nn01to3 12860 xrltlen 13066 sgnn 15019 isprm3 16612 lspsncv0 21071 uvcvv0 21715 fvmptnn04if 22752 chfacfisf 22757 chfacfisfcpmat 22758 trfbas 23747 fbunfip 23772 trfil2 23790 iundisj2 25466 nosupbnd2lem1 27643 noinfbnd2lem1 27658 elnns2 28256 pthdlem2lem 29730 fusgr2wsp2nb 30296 iundisj2f 32552 iundisj2fi 32753 cvmscld 35245 poimirlem25 37624 hlrelat5N 39380 redvmptabs 42333 cmpfiiin 42670 gneispace 44107 iblcncfioo 45960 fourierdlem82 46170 elprneb 47014 fzopredsuc 47308 iccpartiltu 47407 |
| Copyright terms: Public domain | W3C validator |