| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2740 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2975 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: ord1eln01 8417 ord2eln012 8418 fiming 9391 wemapsolem 9443 nn01to3 12841 xrltlen 13047 sgnn 15003 isprm3 16596 lspsncv0 21085 uvcvv0 21729 fvmptnn04if 22765 chfacfisf 22770 chfacfisfcpmat 22771 trfbas 23760 fbunfip 23785 trfil2 23803 iundisj2 25478 nosupbnd2lem1 27655 noinfbnd2lem1 27670 elnns2 28270 pthdlem2lem 29747 fusgr2wsp2nb 30316 iundisj2f 32572 iundisj2fi 32784 cvmscld 35338 poimirlem25 37705 hlrelat5N 39520 redvmptabs 42478 cmpfiiin 42814 gneispace 44251 iblcncfioo 46100 fourierdlem82 46310 elprneb 47153 fzopredsuc 47447 iccpartiltu 47546 |
| Copyright terms: Public domain | W3C validator |