| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2736 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2971 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: ord1eln01 8460 ord2eln012 8461 fiming 9451 wemapsolem 9503 nn01to3 12900 xrltlen 13106 sgnn 15060 isprm3 16653 lspsncv0 21056 uvcvv0 21699 fvmptnn04if 22736 chfacfisf 22741 chfacfisfcpmat 22742 trfbas 23731 fbunfip 23756 trfil2 23774 iundisj2 25450 nosupbnd2lem1 27627 noinfbnd2lem1 27642 elnns2 28233 pthdlem2lem 29697 fusgr2wsp2nb 30263 iundisj2f 32519 iundisj2fi 32720 cvmscld 35260 poimirlem25 37639 hlrelat5N 39395 redvmptabs 42348 cmpfiiin 42685 gneispace 44123 iblcncfioo 45976 fourierdlem82 46186 elprneb 47030 fzopredsuc 47324 iccpartiltu 47423 |
| Copyright terms: Public domain | W3C validator |