| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2738 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2974 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: ord1eln01 8411 ord2eln012 8412 fiming 9384 wemapsolem 9436 nn01to3 12836 xrltlen 13042 sgnn 14998 isprm3 16591 lspsncv0 21081 uvcvv0 21725 fvmptnn04if 22762 chfacfisf 22767 chfacfisfcpmat 22768 trfbas 23757 fbunfip 23782 trfil2 23800 iundisj2 25475 nosupbnd2lem1 27652 noinfbnd2lem1 27667 elnns2 28267 pthdlem2lem 29743 fusgr2wsp2nb 30309 iundisj2f 32565 iundisj2fi 32774 cvmscld 35305 poimirlem25 37684 hlrelat5N 39439 redvmptabs 42392 cmpfiiin 42729 gneispace 44166 iblcncfioo 46015 fourierdlem82 46225 elprneb 47059 fzopredsuc 47353 iccpartiltu 47452 |
| Copyright terms: Public domain | W3C validator |