Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version |
Description: Characterization of inequality in terms of reversed equality (see bicom 221). (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3abii 2992 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1542 ≠ wne 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-ne 2946 |
This theorem is referenced by: 0nelopabOLD 5482 fiming 9235 wemapsolem 9287 nn01to3 12680 xrltlen 12879 sgnn 14803 isprm3 16386 lspsncv0 20406 uvcvv0 20995 fvmptnn04if 21996 chfacfisf 22001 chfacfisfcpmat 22002 trfbas 22993 fbunfip 23018 trfil2 23036 iundisj2 24711 pthdlem2lem 28131 fusgr2wsp2nb 28694 iundisj2f 30925 iundisj2fi 31114 cvmscld 33231 nosupbnd2lem1 33914 noinfbnd2lem1 33929 poimirlem25 35798 hlrelat5N 37411 cmpfiiin 40516 gneispace 41714 iblcncfioo 43490 fourierdlem82 43700 elprneb 44491 fzopredsuc 44784 iccpartiltu 44843 |
Copyright terms: Public domain | W3C validator |