| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2972 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: ord1eln01 8463 ord2eln012 8464 fiming 9458 wemapsolem 9510 nn01to3 12907 xrltlen 13113 sgnn 15067 isprm3 16660 lspsncv0 21063 uvcvv0 21706 fvmptnn04if 22743 chfacfisf 22748 chfacfisfcpmat 22749 trfbas 23738 fbunfip 23763 trfil2 23781 iundisj2 25457 nosupbnd2lem1 27634 noinfbnd2lem1 27649 elnns2 28240 pthdlem2lem 29704 fusgr2wsp2nb 30270 iundisj2f 32526 iundisj2fi 32727 cvmscld 35267 poimirlem25 37646 hlrelat5N 39402 redvmptabs 42355 cmpfiiin 42692 gneispace 44130 iblcncfioo 45983 fourierdlem82 46193 elprneb 47034 fzopredsuc 47328 iccpartiltu 47427 |
| Copyright terms: Public domain | W3C validator |