MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nesym Structured version   Visualization version   GIF version

Theorem nesym 2989
Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2743 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3abii 2979 1 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wne 2933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-ne 2934
This theorem is referenced by:  ord1eln01  8513  ord2eln012  8514  fiming  9517  wemapsolem  9569  nn01to3  12962  xrltlen  13167  sgnn  15118  isprm3  16707  lspsncv0  21112  uvcvv0  21755  fvmptnn04if  22792  chfacfisf  22797  chfacfisfcpmat  22798  trfbas  23787  fbunfip  23812  trfil2  23830  iundisj2  25507  nosupbnd2lem1  27684  noinfbnd2lem1  27699  elnns2  28290  pthdlem2lem  29754  fusgr2wsp2nb  30320  iundisj2f  32576  iundisj2fi  32779  cvmscld  35300  poimirlem25  37674  hlrelat5N  39425  redvmptabs  42370  cmpfiiin  42687  gneispace  44125  iblcncfioo  45974  fourierdlem82  46184  elprneb  47025  fzopredsuc  47319  iccpartiltu  47403
  Copyright terms: Public domain W3C validator