| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2743 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2979 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: ord1eln01 8513 ord2eln012 8514 fiming 9517 wemapsolem 9569 nn01to3 12962 xrltlen 13167 sgnn 15118 isprm3 16707 lspsncv0 21112 uvcvv0 21755 fvmptnn04if 22792 chfacfisf 22797 chfacfisfcpmat 22798 trfbas 23787 fbunfip 23812 trfil2 23830 iundisj2 25507 nosupbnd2lem1 27684 noinfbnd2lem1 27699 elnns2 28290 pthdlem2lem 29754 fusgr2wsp2nb 30320 iundisj2f 32576 iundisj2fi 32779 cvmscld 35300 poimirlem25 37674 hlrelat5N 39425 redvmptabs 42370 cmpfiiin 42687 gneispace 44125 iblcncfioo 45974 fourierdlem82 46184 elprneb 47025 fzopredsuc 47319 iccpartiltu 47403 |
| Copyright terms: Public domain | W3C validator |