MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nesym Structured version   Visualization version   GIF version

Theorem nesym 2984
Description: Characterization of inequality in terms of reversed equality (see bicom 222). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2738 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3abii 2974 1 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ne 2929
This theorem is referenced by:  ord1eln01  8411  ord2eln012  8412  fiming  9384  wemapsolem  9436  nn01to3  12836  xrltlen  13042  sgnn  14998  isprm3  16591  lspsncv0  21081  uvcvv0  21725  fvmptnn04if  22762  chfacfisf  22767  chfacfisfcpmat  22768  trfbas  23757  fbunfip  23782  trfil2  23800  iundisj2  25475  nosupbnd2lem1  27652  noinfbnd2lem1  27667  elnns2  28267  pthdlem2lem  29743  fusgr2wsp2nb  30309  iundisj2f  32565  iundisj2fi  32774  cvmscld  35305  poimirlem25  37684  hlrelat5N  39439  redvmptabs  42392  cmpfiiin  42729  gneispace  44166  iblcncfioo  46015  fourierdlem82  46225  elprneb  47059  fzopredsuc  47353  iccpartiltu  47452
  Copyright terms: Public domain W3C validator