Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version |
Description: Characterization of inequality in terms of reversed equality (see bicom 221). (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3abii 2990 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: 0nelopabOLD 5481 ord1eln01 8326 ord2eln012 8327 fiming 9257 wemapsolem 9309 nn01to3 12681 xrltlen 12880 sgnn 14805 isprm3 16388 lspsncv0 20408 uvcvv0 20997 fvmptnn04if 21998 chfacfisf 22003 chfacfisfcpmat 22004 trfbas 22995 fbunfip 23020 trfil2 23038 iundisj2 24713 pthdlem2lem 28135 fusgr2wsp2nb 28698 iundisj2f 30929 iundisj2fi 31118 cvmscld 33235 nosupbnd2lem1 33918 noinfbnd2lem1 33933 poimirlem25 35802 hlrelat5N 37415 cmpfiiin 40519 gneispace 41744 iblcncfioo 43519 fourierdlem82 43729 elprneb 44523 fzopredsuc 44815 iccpartiltu 44874 |
Copyright terms: Public domain | W3C validator |