Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesym | Structured version Visualization version GIF version |
Description: Characterization of inequality in terms of reversed equality (see bicom 221). (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | 1 | necon3abii 2989 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: 0nelopabOLD 5472 fiming 9187 wemapsolem 9239 nn01to3 12610 xrltlen 12809 sgnn 14733 isprm3 16316 lspsncv0 20323 uvcvv0 20907 fvmptnn04if 21906 chfacfisf 21911 chfacfisfcpmat 21912 trfbas 22903 fbunfip 22928 trfil2 22946 iundisj2 24618 pthdlem2lem 28036 fusgr2wsp2nb 28599 iundisj2f 30830 iundisj2fi 31020 cvmscld 33135 nosupbnd2lem1 33845 noinfbnd2lem1 33860 poimirlem25 35729 hlrelat5N 37342 cmpfiiin 40435 gneispace 41633 iblcncfioo 43409 fourierdlem82 43619 elprneb 44410 fzopredsuc 44703 iccpartiltu 44762 |
Copyright terms: Public domain | W3C validator |