MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neir Structured version   Visualization version   GIF version

Theorem neir 3017
Description: Inference associated with df-ne 3015. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
neir 𝐴𝐵

Proof of Theorem neir
StepHypRef Expression
1 neir.1 . 2 ¬ 𝐴 = 𝐵
2 df-ne 3015 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbir 234 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wne 3014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-ne 3015
This theorem is referenced by:  nesymir  3072  nsuceq0  6260  onnev  6300  ax1ne0  10582  ine0  11075  1nei  30493  nosgnn0i  33251  bj-pinftynminfty  34614
  Copyright terms: Public domain W3C validator