MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neir Structured version   Visualization version   GIF version

Theorem neir 2928
Description: Inference associated with df-ne 2926. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
neir 𝐴𝐵

Proof of Theorem neir
StepHypRef Expression
1 neir.1 . 2 ¬ 𝐴 = 𝐵
2 df-ne 2926 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbir 231 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  nesymir  2983  vn0  4308  nsuceq0  6417  onnev  6461  nlim2  8454  ax1ne0  11113  ine0  11613  nosgnn0i  27571  1nei  32660  bj-pinftynminfty  37215
  Copyright terms: Public domain W3C validator