Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necomi | Structured version Visualization version GIF version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
necomi | ⊢ 𝐵 ≠ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | necom 3004 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ 𝐵 ≠ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-ne 2952 |
This theorem is referenced by: nesymi 3008 nesymir 3009 0nep0 5230 opthhausdorff 5380 xp01disj 8136 xp01disjl 8137 1sdom 8772 djuexb 9384 djuin 9393 pnfnemnf 10747 mnfnepnf 10748 ltneii 10804 0ne1 11758 0ne2 11894 xnn0n0n1ge2b 12580 xmulpnf1 12721 fzprval 13030 hashneq0 13788 f1oun2prg 14339 geo2sum2 15291 fnpr2o 16902 fvpr0o 16904 fvpr1o 16905 rescabs 17176 symgvalstruct 18606 dmdprdpr 19253 dprdpr 19254 mgpress 19332 cnfldfunALT 20193 xpstopnlem1 22523 2logb9irrALT 25497 sqrt2cxp2logb9e3 25498 1sgm2ppw 25897 2sqlem11 26126 axlowdimlem13 26861 usgrexmpldifpr 27161 usgrexmplef 27162 vdegp1ai 27439 vdegp1bi 27440 konigsbergiedgw 28146 konigsberglem2 28151 konigsberglem3 28152 ex-pss 28326 ex-hash 28351 signswch 32072 nogesgn1ores 33475 nosepnelem 33480 noinfbnd1lem3 33526 noinfbnd1lem5 33528 noinfbnd2lem1 33531 bj-disjsn01 34704 bj-1upln0 34761 finxpreclem3 35125 remul01 39932 sn-0tie0 39963 flt0 40011 mnuprdlem2 41399 ovnsubadd2lem 43695 nnlog2ge0lt1 45404 logbpw2m1 45405 fllog2 45406 blennnelnn 45414 nnpw2blen 45418 blen1 45422 blen2 45423 blen1b 45426 blennnt2 45427 nnolog2flm1 45428 blennngt2o2 45430 blennn0e2 45432 inlinecirc02plem 45624 |
Copyright terms: Public domain | W3C validator |