| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2984. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2982 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2930 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: 0nelopab 5505 0nelxp 5650 1sdom2dom 9138 recgt0ii 12025 xrltnr 13015 nltmnf 13025 xnn0xadd0 13143 fnpr2ob 17459 setcepi 17992 pmtrprfval 19397 pmtrprfvalrn 19398 cnfldfun 21303 cnfldfunOLD 21316 zringndrg 21403 vieta1lem2 26244 2lgslem3 27340 2lgslem4 27342 sltval2 27593 nosgnn0 27595 nogt01o 27633 structiedg0val 28998 snstriedgval 29014 rusgrnumwwlkl1 29944 clwwlknon1sn 30075 frgrreggt1 30368 1nei 32715 sgnnbi 32816 sgnpbi 32817 rtelextdg2lem 33734 ballotlemi1 34511 plymulx0 34555 fmlaomn0 35422 fmla0disjsuc 35430 fmlasucdisj 35431 bj-0nel1 36986 bj-0nelsngl 37004 bj-pr22val 37052 bj-pinftynminfty 37260 finxp0 37424 wepwsolem 43074 refsum2cnlem1 45073 spr0nelg 47506 oddprmALTV 47717 |
| Copyright terms: Public domain | W3C validator |