![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 3031. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 3029 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2977 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1653 ≠ wne 2975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2781 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2796 df-ne 2976 |
This theorem is referenced by: 0nelxp 5350 recgt0ii 11225 xrltnr 12204 nltmnf 12214 xnn0xadd0 12330 setcepi 17056 pmtrprfval 18223 pmtrprfvalrn 18224 cnfldfunALT 20085 zringndrg 20164 vieta1lem2 24411 2lgslem3 25485 2lgslem4 25487 structiedg0val 26261 snstriedgval 26277 rusgrnumwwlkl1 27263 clwwlknon1sn 27443 frgrreggt1 27782 ballotlemi1 31085 sgnnbi 31128 sgnpbi 31129 plymulx0 31146 sltval2 32326 nosgnn0 32328 bj-0nel1 33436 bj-0nelsngl 33455 bj-pr22val 33503 bj-pinftynminfty 33617 finxp0 33730 wepwsolem 38401 refsum2cnlem1 39960 oddprmALTV 42384 spr0nelg 42529 |
Copyright terms: Public domain | W3C validator |