| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2981. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2979 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2927 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: 0nelopab 5527 0nelxp 5672 1sdom2dom 9194 recgt0ii 12089 xrltnr 13079 nltmnf 13089 xnn0xadd0 13207 fnpr2ob 17521 setcepi 18050 pmtrprfval 19417 pmtrprfvalrn 19418 cnfldfun 21278 cnfldfunOLD 21291 zringndrg 21378 vieta1lem2 26219 2lgslem3 27315 2lgslem4 27317 sltval2 27568 nosgnn0 27570 nogt01o 27608 structiedg0val 28949 snstriedgval 28965 rusgrnumwwlkl1 29898 clwwlknon1sn 30029 frgrreggt1 30322 1nei 32660 sgnnbi 32763 sgnpbi 32764 rtelextdg2lem 33716 ballotlemi1 34494 plymulx0 34538 fmlaomn0 35377 fmla0disjsuc 35385 fmlasucdisj 35386 bj-0nel1 36941 bj-0nelsngl 36959 bj-pr22val 37007 bj-pinftynminfty 37215 finxp0 37379 wepwsolem 43031 refsum2cnlem1 45031 spr0nelg 47477 oddprmALTV 47688 |
| Copyright terms: Public domain | W3C validator |