Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 2999. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 2997 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2944 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: 0nelopab 5471 0nelxp 5614 recgt0ii 11811 xrltnr 12784 nltmnf 12794 xnn0xadd0 12910 fnpr2ob 17186 setcepi 17719 pmtrprfval 19010 pmtrprfvalrn 19011 cnfldfunALT 20523 zringndrg 20602 vieta1lem2 25376 2lgslem3 26457 2lgslem4 26459 structiedg0val 27295 snstriedgval 27311 rusgrnumwwlkl1 28234 clwwlknon1sn 28365 frgrreggt1 28658 1nei 30973 ballotlemi1 32369 sgnnbi 32412 sgnpbi 32413 plymulx0 32426 fmlaomn0 33252 fmla0disjsuc 33260 fmlasucdisj 33261 sltval2 33786 nosgnn0 33788 nogt01o 33826 bj-0nel1 35070 bj-0nelsngl 35088 bj-pr22val 35136 bj-pinftynminfty 35325 finxp0 35489 wepwsolem 40783 refsum2cnlem1 42469 spr0nelg 44816 oddprmALTV 45027 |
Copyright terms: Public domain | W3C validator |