| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2982. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2980 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2928 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: 0nelopab 5530 0nelxp 5675 1sdom2dom 9201 recgt0ii 12096 xrltnr 13086 nltmnf 13096 xnn0xadd0 13214 fnpr2ob 17528 setcepi 18057 pmtrprfval 19424 pmtrprfvalrn 19425 cnfldfun 21285 cnfldfunOLD 21298 zringndrg 21385 vieta1lem2 26226 2lgslem3 27322 2lgslem4 27324 sltval2 27575 nosgnn0 27577 nogt01o 27615 structiedg0val 28956 snstriedgval 28972 rusgrnumwwlkl1 29905 clwwlknon1sn 30036 frgrreggt1 30329 1nei 32667 sgnnbi 32770 sgnpbi 32771 rtelextdg2lem 33723 ballotlemi1 34501 plymulx0 34545 fmlaomn0 35384 fmla0disjsuc 35392 fmlasucdisj 35393 bj-0nel1 36948 bj-0nelsngl 36966 bj-pr22val 37014 bj-pinftynminfty 37222 finxp0 37386 wepwsolem 43038 refsum2cnlem1 45038 spr0nelg 47481 oddprmALTV 47692 |
| Copyright terms: Public domain | W3C validator |