|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2996. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 | 
| Ref | Expression | 
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2994 | . 2 ⊢ 𝐵 ≠ 𝐴 | 
| 3 | 2 | neii 2941 | 1 ⊢ ¬ 𝐵 = 𝐴 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ne 2940 | 
| This theorem is referenced by: 0nelopab 5571 0nelxp 5718 1sdom2dom 9284 recgt0ii 12175 xrltnr 13162 nltmnf 13172 xnn0xadd0 13290 fnpr2ob 17604 setcepi 18134 pmtrprfval 19506 pmtrprfvalrn 19507 cnfldfun 21379 cnfldfunOLD 21392 zringndrg 21480 vieta1lem2 26354 2lgslem3 27449 2lgslem4 27451 sltval2 27702 nosgnn0 27704 nogt01o 27742 structiedg0val 29040 snstriedgval 29056 rusgrnumwwlkl1 29989 clwwlknon1sn 30120 frgrreggt1 30413 1nei 32748 rtelextdg2lem 33768 ballotlemi1 34506 sgnnbi 34549 sgnpbi 34550 plymulx0 34563 fmlaomn0 35396 fmla0disjsuc 35404 fmlasucdisj 35405 bj-0nel1 36955 bj-0nelsngl 36973 bj-pr22val 37021 bj-pinftynminfty 37229 finxp0 37393 wepwsolem 43059 refsum2cnlem1 45047 spr0nelg 47468 oddprmALTV 47679 | 
| Copyright terms: Public domain | W3C validator |