![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 2998. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 2996 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2943 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ne 2942 |
This theorem is referenced by: 0nelopab 5568 0nelxp 5711 1sdom2dom 9247 recgt0ii 12120 xrltnr 13099 nltmnf 13109 xnn0xadd0 13226 fnpr2ob 17504 setcepi 18038 pmtrprfval 19355 pmtrprfvalrn 19356 cnfldfun 20956 zringndrg 21038 vieta1lem2 25824 2lgslem3 26907 2lgslem4 26909 sltval2 27159 nosgnn0 27161 nogt01o 27199 structiedg0val 28282 snstriedgval 28298 rusgrnumwwlkl1 29222 clwwlknon1sn 29353 frgrreggt1 29646 1nei 31961 ballotlemi1 33501 sgnnbi 33544 sgnpbi 33545 plymulx0 33558 fmlaomn0 34381 fmla0disjsuc 34389 fmlasucdisj 34390 bj-0nel1 35834 bj-0nelsngl 35852 bj-pr22val 35900 bj-pinftynminfty 36108 finxp0 36272 wepwsolem 41784 refsum2cnlem1 43721 spr0nelg 46144 oddprmALTV 46355 |
Copyright terms: Public domain | W3C validator |