| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2981. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2979 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2927 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: 0nelopab 5512 0nelxp 5657 1sdom2dom 9153 recgt0ii 12049 xrltnr 13039 nltmnf 13049 xnn0xadd0 13167 fnpr2ob 17480 setcepi 18013 pmtrprfval 19384 pmtrprfvalrn 19385 cnfldfun 21293 cnfldfunOLD 21306 zringndrg 21393 vieta1lem2 26235 2lgslem3 27331 2lgslem4 27333 sltval2 27584 nosgnn0 27586 nogt01o 27624 structiedg0val 28985 snstriedgval 29001 rusgrnumwwlkl1 29931 clwwlknon1sn 30062 frgrreggt1 30355 1nei 32693 sgnnbi 32796 sgnpbi 32797 rtelextdg2lem 33692 ballotlemi1 34470 plymulx0 34514 fmlaomn0 35362 fmla0disjsuc 35370 fmlasucdisj 35371 bj-0nel1 36926 bj-0nelsngl 36944 bj-pr22val 36992 bj-pinftynminfty 37200 finxp0 37364 wepwsolem 43015 refsum2cnlem1 45015 spr0nelg 47461 oddprmALTV 47672 |
| Copyright terms: Public domain | W3C validator |