| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2989. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2987 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2935 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: 0nelopab 5547 0nelxp 5693 1sdom2dom 9260 recgt0ii 12153 xrltnr 13140 nltmnf 13150 xnn0xadd0 13268 fnpr2ob 17577 setcepi 18106 pmtrprfval 19473 pmtrprfvalrn 19474 cnfldfun 21334 cnfldfunOLD 21347 zringndrg 21434 vieta1lem2 26276 2lgslem3 27372 2lgslem4 27374 sltval2 27625 nosgnn0 27627 nogt01o 27665 structiedg0val 29006 snstriedgval 29022 rusgrnumwwlkl1 29955 clwwlknon1sn 30086 frgrreggt1 30379 1nei 32719 sgnnbi 32822 sgnpbi 32823 rtelextdg2lem 33765 ballotlemi1 34540 plymulx0 34584 fmlaomn0 35417 fmla0disjsuc 35425 fmlasucdisj 35426 bj-0nel1 36976 bj-0nelsngl 36994 bj-pr22val 37042 bj-pinftynminfty 37250 finxp0 37414 wepwsolem 43033 refsum2cnlem1 45028 spr0nelg 47457 oddprmALTV 47668 |
| Copyright terms: Public domain | W3C validator |