![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 2997. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 2995 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2942 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-ne 2941 |
This theorem is referenced by: 0nelopab 5567 0nelxp 5710 1sdom2dom 9246 recgt0ii 12119 xrltnr 13098 nltmnf 13108 xnn0xadd0 13225 fnpr2ob 17503 setcepi 18037 pmtrprfval 19354 pmtrprfvalrn 19355 cnfldfun 20955 zringndrg 21037 vieta1lem2 25823 2lgslem3 26904 2lgslem4 26906 sltval2 27156 nosgnn0 27158 nogt01o 27196 structiedg0val 28279 snstriedgval 28295 rusgrnumwwlkl1 29219 clwwlknon1sn 29350 frgrreggt1 29643 1nei 31956 ballotlemi1 33496 sgnnbi 33539 sgnpbi 33540 plymulx0 33553 fmlaomn0 34376 fmla0disjsuc 34384 fmlasucdisj 34385 bj-0nel1 35829 bj-0nelsngl 35847 bj-pr22val 35895 bj-pinftynminfty 36103 finxp0 36267 wepwsolem 41774 refsum2cnlem1 43711 spr0nelg 46134 oddprmALTV 46345 |
Copyright terms: Public domain | W3C validator |