Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 3000. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 2998 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2945 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: 0nelopab 5480 0nelxp 5623 recgt0ii 11881 xrltnr 12855 nltmnf 12865 xnn0xadd0 12981 fnpr2ob 17269 setcepi 17803 pmtrprfval 19095 pmtrprfvalrn 19096 cnfldfun 20609 zringndrg 20690 vieta1lem2 25471 2lgslem3 26552 2lgslem4 26554 structiedg0val 27392 snstriedgval 27408 rusgrnumwwlkl1 28333 clwwlknon1sn 28464 frgrreggt1 28757 1nei 31071 ballotlemi1 32469 sgnnbi 32512 sgnpbi 32513 plymulx0 32526 fmlaomn0 33352 fmla0disjsuc 33360 fmlasucdisj 33361 sltval2 33859 nosgnn0 33861 nogt01o 33899 bj-0nel1 35143 bj-0nelsngl 35161 bj-pr22val 35209 bj-pinftynminfty 35398 finxp0 35562 wepwsolem 40867 refsum2cnlem1 42580 spr0nelg 44928 oddprmALTV 45139 |
Copyright terms: Public domain | W3C validator |