![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version |
Description: Inference associated with nesym 3003. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | 1 | necomi 3001 | . 2 ⊢ 𝐵 ≠ 𝐴 |
3 | 2 | neii 2948 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: 0nelopab 5586 0nelxp 5734 1sdom2dom 9310 recgt0ii 12201 xrltnr 13182 nltmnf 13192 xnn0xadd0 13309 fnpr2ob 17618 setcepi 18155 pmtrprfval 19529 pmtrprfvalrn 19530 cnfldfun 21401 cnfldfunOLD 21414 zringndrg 21502 vieta1lem2 26371 2lgslem3 27466 2lgslem4 27468 sltval2 27719 nosgnn0 27721 nogt01o 27759 structiedg0val 29057 snstriedgval 29073 rusgrnumwwlkl1 30001 clwwlknon1sn 30132 frgrreggt1 30425 1nei 32750 rtelextdg2lem 33717 ballotlemi1 34467 sgnnbi 34510 sgnpbi 34511 plymulx0 34524 fmlaomn0 35358 fmla0disjsuc 35366 fmlasucdisj 35367 bj-0nel1 36919 bj-0nelsngl 36937 bj-pr22val 36985 bj-pinftynminfty 37193 finxp0 37357 wepwsolem 42999 refsum2cnlem1 44937 spr0nelg 47350 oddprmALTV 47561 |
Copyright terms: Public domain | W3C validator |