| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nesymi | Structured version Visualization version GIF version | ||
| Description: Inference associated with nesym 2985. (Contributed by BJ, 7-Jul-2018.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | 1 | necomi 2983 | . 2 ⊢ 𝐵 ≠ 𝐴 |
| 3 | 2 | neii 2931 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: 0nelopab 5508 0nelxp 5653 1sdom2dom 9145 recgt0ii 12035 xrltnr 13020 nltmnf 13030 xnn0xadd0 13148 fnpr2ob 17464 setcepi 17997 pmtrprfval 19401 pmtrprfvalrn 19402 cnfldfun 21307 cnfldfunOLD 21320 zringndrg 21407 vieta1lem2 26247 2lgslem3 27343 2lgslem4 27345 sltval2 27596 nosgnn0 27598 nogt01o 27636 structiedg0val 29002 snstriedgval 29018 rusgrnumwwlkl1 29951 clwwlknon1sn 30082 frgrreggt1 30375 1nei 32724 sgnnbi 32826 sgnpbi 32827 rtelextdg2lem 33760 ballotlemi1 34537 plymulx0 34581 fmlaomn0 35455 fmla0disjsuc 35463 fmlasucdisj 35464 bj-0nel1 37018 bj-0nelsngl 37036 bj-pr22val 37084 bj-pinftynminfty 37292 finxp0 37456 wepwsolem 43159 refsum2cnlem1 45158 spr0nelg 47600 oddprmALTV 47811 |
| Copyright terms: Public domain | W3C validator |