Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relowlpssretop Structured version   Visualization version   GIF version

Theorem relowlpssretop 33523
Description: The lower limit topology on the reals is strictly finer than the standard topology. (Contributed by ML, 2-Aug-2020.)
Hypothesis
Ref Expression
relowlpssretop.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
relowlpssretop (topGen‘ran (,)) ⊊ (topGen‘𝐼)

Proof of Theorem relowlpssretop
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑜 𝑥 𝑚 𝑛 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relowlpssretop.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
21relowlssretop 33522 . 2 (topGen‘ran (,)) ⊆ (topGen‘𝐼)
3 2re 11370 . . . . 5 2 ∈ ℝ
4 1lt2 11466 . . . . 5 1 < 2
5 ovex 6902 . . . . . . . . . . . 12 (1[,)𝑐) ∈ V
6 sbcan 3676 . . . . . . . . . . . . . . 15 ([1 / 𝑥](𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ↔ ([1 / 𝑥]𝑐 ∈ ℝ ∧ [1 / 𝑥]𝑥 < 𝑐))
7 1re 10321 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
8 sbcg 3699 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → ([1 / 𝑥]𝑐 ∈ ℝ ↔ 𝑐 ∈ ℝ))
97, 8ax-mp 5 . . . . . . . . . . . . . . . 16 ([1 / 𝑥]𝑐 ∈ ℝ ↔ 𝑐 ∈ ℝ)
10 sbcbr123 4898 . . . . . . . . . . . . . . . . 17 ([1 / 𝑥]𝑥 < 𝑐1 / 𝑥𝑥1 / 𝑥 < 1 / 𝑥𝑐)
11 csbvarg 4200 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → 1 / 𝑥𝑥 = 1)
127, 11ax-mp 5 . . . . . . . . . . . . . . . . . 18 1 / 𝑥𝑥 = 1
13 csbconstg 3741 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → 1 / 𝑥𝑐 = 𝑐)
147, 13ax-mp 5 . . . . . . . . . . . . . . . . . 18 1 / 𝑥𝑐 = 𝑐
1512, 14breq12i 4853 . . . . . . . . . . . . . . . . 17 (1 / 𝑥𝑥1 / 𝑥 < 1 / 𝑥𝑐 ↔ 11 / 𝑥 < 𝑐)
16 csbconstg 3741 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → 1 / 𝑥 < = < )
177, 16ax-mp 5 . . . . . . . . . . . . . . . . . 18 1 / 𝑥 < = <
1817breqi 4850 . . . . . . . . . . . . . . . . 17 (11 / 𝑥 < 𝑐 ↔ 1 < 𝑐)
1910, 15, 183bitri 288 . . . . . . . . . . . . . . . 16 ([1 / 𝑥]𝑥 < 𝑐 ↔ 1 < 𝑐)
209, 19anbi12i 614 . . . . . . . . . . . . . . 15 (([1 / 𝑥]𝑐 ∈ ℝ ∧ [1 / 𝑥]𝑥 < 𝑐) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐))
216, 20bitri 266 . . . . . . . . . . . . . 14 ([1 / 𝑥](𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐))
22 sbceqg 4181 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → ([1 / 𝑥]𝑖 = (𝑥[,)𝑐) ↔ 1 / 𝑥𝑖 = 1 / 𝑥(𝑥[,)𝑐)))
237, 22ax-mp 5 . . . . . . . . . . . . . . 15 ([1 / 𝑥]𝑖 = (𝑥[,)𝑐) ↔ 1 / 𝑥𝑖 = 1 / 𝑥(𝑥[,)𝑐))
24 csbconstg 3741 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → 1 / 𝑥𝑖 = 𝑖)
257, 24ax-mp 5 . . . . . . . . . . . . . . . 16 1 / 𝑥𝑖 = 𝑖
26 csbov123 6911 . . . . . . . . . . . . . . . . 17 1 / 𝑥(𝑥[,)𝑐) = (1 / 𝑥𝑥1 / 𝑥[,)1 / 𝑥𝑐)
27 csbconstg 3741 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → 1 / 𝑥[,) = [,))
287, 27ax-mp 5 . . . . . . . . . . . . . . . . . 18 1 / 𝑥[,) = [,)
2912, 14, 28oveq123i 6884 . . . . . . . . . . . . . . . . 17 (1 / 𝑥𝑥1 / 𝑥[,)1 / 𝑥𝑐) = (1[,)𝑐)
3026, 29eqtri 2828 . . . . . . . . . . . . . . . 16 1 / 𝑥(𝑥[,)𝑐) = (1[,)𝑐)
3125, 30eqeq12i 2820 . . . . . . . . . . . . . . 15 (1 / 𝑥𝑖 = 1 / 𝑥(𝑥[,)𝑐) ↔ 𝑖 = (1[,)𝑐))
3223, 31bitri 266 . . . . . . . . . . . . . 14 ([1 / 𝑥]𝑖 = (𝑥[,)𝑐) ↔ 𝑖 = (1[,)𝑐))
33 sbcan 3676 . . . . . . . . . . . . . . 15 ([1 / 𝑥]((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ↔ ([1 / 𝑥](𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ [1 / 𝑥]𝑖 = (𝑥[,)𝑐)))
34 simpr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
35 simpl 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑥 ∈ ℝ)
36 leid 10414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℝ → 𝑥𝑥)
3735, 36jccir 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑥 ∈ ℝ ∧ 𝑥𝑥))
38 rexr 10366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 ∈ ℝ → 𝑐 ∈ ℝ*)
39 elico2 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ*) → (𝑥 ∈ (𝑥[,)𝑐) ↔ (𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑐)))
4038, 39sylan2 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑥 ∈ (𝑥[,)𝑐) ↔ (𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑐)))
41 df-3an 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑐) ↔ ((𝑥 ∈ ℝ ∧ 𝑥𝑥) ∧ 𝑥 < 𝑐))
4240, 41syl6bb 278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑥 ∈ (𝑥[,)𝑐) ↔ ((𝑥 ∈ ℝ ∧ 𝑥𝑥) ∧ 𝑥 < 𝑐)))
4342baibd 531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥𝑥)) → (𝑥 ∈ (𝑥[,)𝑐) ↔ 𝑥 < 𝑐))
4437, 43mpdan 670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑥 ∈ (𝑥[,)𝑐) ↔ 𝑥 < 𝑐))
4544biimpar 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) → 𝑥 ∈ (𝑥[,)𝑐))
4645adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → 𝑥 ∈ (𝑥[,)𝑐))
47 eleq2 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 = (𝑥[,)𝑐) → (𝑥𝑖𝑥 ∈ (𝑥[,)𝑐)))
4847adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → (𝑥𝑖𝑥 ∈ (𝑥[,)𝑐)))
4946, 48mpbird 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → 𝑥𝑖)
50 rexpssxrxp 10365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
51 opelxpi 5348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ⟨𝑥, 𝑐⟩ ∈ (ℝ × ℝ))
5250, 51sseldi 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ⟨𝑥, 𝑐⟩ ∈ (ℝ* × ℝ*))
53 df-ico 12395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 [,) = (𝑥 ∈ ℝ*, 𝑐 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑐)})
5453ixxf 12399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
5554fdmi 6262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 dom [,) = (ℝ* × ℝ*)
5655eleq2i 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑥, 𝑐⟩ ∈ dom [,) ↔ ⟨𝑥, 𝑐⟩ ∈ (ℝ* × ℝ*))
5753mpt2fun 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Fun [,)
58 funfvima 6713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((Fun [,) ∧ ⟨𝑥, 𝑐⟩ ∈ dom [,)) → (⟨𝑥, 𝑐⟩ ∈ (ℝ × ℝ) → ([,)‘⟨𝑥, 𝑐⟩) ∈ ([,) “ (ℝ × ℝ))))
5957, 58mpan 673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑥, 𝑐⟩ ∈ dom [,) → (⟨𝑥, 𝑐⟩ ∈ (ℝ × ℝ) → ([,)‘⟨𝑥, 𝑐⟩) ∈ ([,) “ (ℝ × ℝ))))
6056, 59sylbir 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⟨𝑥, 𝑐⟩ ∈ (ℝ* × ℝ*) → (⟨𝑥, 𝑐⟩ ∈ (ℝ × ℝ) → ([,)‘⟨𝑥, 𝑐⟩) ∈ ([,) “ (ℝ × ℝ))))
6152, 51, 60sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ([,)‘⟨𝑥, 𝑐⟩) ∈ ([,) “ (ℝ × ℝ)))
62 df-ov 6873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥[,)𝑐) = ([,)‘⟨𝑥, 𝑐⟩)
6361, 62, 13eltr4g 2902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑥[,)𝑐) ∈ 𝐼)
64 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 = (𝑥[,)𝑐) → (𝑖𝐼 ↔ (𝑥[,)𝑐) ∈ 𝐼))
6563, 64syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑖 = (𝑥[,)𝑐) → 𝑖𝐼))
6665imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑖 = (𝑥[,)𝑐)) → 𝑖𝐼)
67 ioof 12486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
68 ffn 6252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
6967, 68ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (,) Fn (ℝ* × ℝ*)
70 ovelrn 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((,) Fn (ℝ* × ℝ*) → (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏)))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏))
72 iooelexlt 33521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑦 ∈ (𝑎(,)𝑏)𝑦 < 𝑥)
73 df-rex 3102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (∃𝑦 ∈ (𝑎(,)𝑏)𝑦 < 𝑥 ↔ ∃𝑦(𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥))
7472, 73sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑦(𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥))
75 simpl 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → 𝑦 ∈ (𝑎(,)𝑏))
7675a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → 𝑦 ∈ (𝑎(,)𝑏)))
7753elmpt2cl2 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑦 ∈ (𝑥[,)𝑐) → 𝑐 ∈ ℝ*)
78 elioore 12419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
79 elico2 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ*) → (𝑦 ∈ (𝑥[,)𝑐) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦𝑦 < 𝑐)))
8078, 79sylan 571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑐 ∈ ℝ*) → (𝑦 ∈ (𝑥[,)𝑐) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦𝑦 < 𝑐)))
81 simp2 1160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((𝑦 ∈ ℝ ∧ 𝑥𝑦𝑦 < 𝑐) → 𝑥𝑦)
8280, 81syl6bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑐 ∈ ℝ*) → (𝑦 ∈ (𝑥[,)𝑐) → 𝑥𝑦))
8382ex 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (𝑥 ∈ (𝑎(,)𝑏) → (𝑐 ∈ ℝ* → (𝑦 ∈ (𝑥[,)𝑐) → 𝑥𝑦)))
8483com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑥 ∈ (𝑎(,)𝑏) → (𝑦 ∈ (𝑥[,)𝑐) → (𝑐 ∈ ℝ*𝑥𝑦)))
8577, 84mpdi 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝑥 ∈ (𝑎(,)𝑏) → (𝑦 ∈ (𝑥[,)𝑐) → 𝑥𝑦))
8685imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → 𝑥𝑦)
8778rexrd 10370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ*)
8887adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → 𝑥 ∈ ℝ*)
89 elicore 12440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ (𝑥[,)𝑐)) → 𝑦 ∈ ℝ)
9078, 89sylan 571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → 𝑦 ∈ ℝ)
9190rexrd 10370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → 𝑦 ∈ ℝ*)
92 xrlenlt 10384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
9392biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 → ¬ 𝑦 < 𝑥))
9493con2d 131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 < 𝑥 → ¬ 𝑥𝑦))
9588, 91, 94syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → (𝑦 < 𝑥 → ¬ 𝑥𝑦))
9686, 95mt2d 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → ¬ 𝑦 < 𝑥)
9796intnand 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑦 ∈ (𝑥[,)𝑐)) → ¬ (𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥))
9897ex 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (𝑥 ∈ (𝑎(,)𝑏) → (𝑦 ∈ (𝑥[,)𝑐) → ¬ (𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥)))
9998con2d 131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → ¬ 𝑦 ∈ (𝑥[,)𝑐)))
10076, 99jcad 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → (𝑦 ∈ (𝑎(,)𝑏) ∧ ¬ 𝑦 ∈ (𝑥[,)𝑐))))
101 annim 392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ (𝑎(,)𝑏) ∧ ¬ 𝑦 ∈ (𝑥[,)𝑐)) ↔ ¬ (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)))
102100, 101syl6ib 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → ¬ (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐))))
103102eximdv 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 ∈ (𝑎(,)𝑏) → (∃𝑦(𝑦 ∈ (𝑎(,)𝑏) ∧ 𝑦 < 𝑥) → ∃𝑦 ¬ (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐))))
10474, 103mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑦 ¬ (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)))
105 exnal 1911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (∃𝑦 ¬ (𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)) ↔ ¬ ∀𝑦(𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)))
106104, 105sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑥 ∈ (𝑎(,)𝑏) → ¬ ∀𝑦(𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)))
107 dfss2 3786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎(,)𝑏) ⊆ (𝑥[,)𝑐) ↔ ∀𝑦(𝑦 ∈ (𝑎(,)𝑏) → 𝑦 ∈ (𝑥[,)𝑐)))
108106, 107sylnibr 320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑥 ∈ (𝑎(,)𝑏) → ¬ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐))
109 imnan 388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑥 ∈ (𝑎(,)𝑏) → ¬ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐)) ↔ ¬ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐)))
110108, 109mpbi 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ¬ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐))
111 eleq2 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑜 = (𝑎(,)𝑏) → (𝑥𝑜𝑥 ∈ (𝑎(,)𝑏)))
112 sseq1 3823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑜 = (𝑎(,)𝑏) → (𝑜 ⊆ (𝑥[,)𝑐) ↔ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐)))
113111, 112anbi12d 618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑜 = (𝑎(,)𝑏) → ((𝑥𝑜𝑜 ⊆ (𝑥[,)𝑐)) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑥[,)𝑐))))
114110, 113mtbiri 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑜 = (𝑎(,)𝑏) → ¬ (𝑥𝑜𝑜 ⊆ (𝑥[,)𝑐)))
115 sseq2 3824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑖 = (𝑥[,)𝑐) → (𝑜𝑖𝑜 ⊆ (𝑥[,)𝑐)))
116115anbi2d 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑖 = (𝑥[,)𝑐) → ((𝑥𝑜𝑜𝑖) ↔ (𝑥𝑜𝑜 ⊆ (𝑥[,)𝑐))))
117116notbid 309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑖 = (𝑥[,)𝑐) → (¬ (𝑥𝑜𝑜𝑖) ↔ ¬ (𝑥𝑜𝑜 ⊆ (𝑥[,)𝑐))))
118114, 117syl5ibrcom 238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑜 = (𝑎(,)𝑏) → (𝑖 = (𝑥[,)𝑐) → ¬ (𝑥𝑜𝑜𝑖)))
119118a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑜 = (𝑎(,)𝑏) → (𝑖 = (𝑥[,)𝑐) → ¬ (𝑥𝑜𝑜𝑖))))
120119rexlimivv 3224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏) → (𝑖 = (𝑥[,)𝑐) → ¬ (𝑥𝑜𝑜𝑖)))
12171, 120sylbi 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑜 ∈ ran (,) → (𝑖 = (𝑥[,)𝑐) → ¬ (𝑥𝑜𝑜𝑖)))
122121com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 = (𝑥[,)𝑐) → (𝑜 ∈ ran (,) → ¬ (𝑥𝑜𝑜𝑖)))
123122ralrimiv 3153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 = (𝑥[,)𝑐) → ∀𝑜 ∈ ran (,) ¬ (𝑥𝑜𝑜𝑖))
124 ralnex 3180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∀𝑜 ∈ ran (,) ¬ (𝑥𝑜𝑜𝑖) ↔ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))
125123, 124sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 = (𝑥[,)𝑐) → ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))
126125adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑖 = (𝑥[,)𝑐)) → ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))
12766, 126jca 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑖 = (𝑥[,)𝑐)) → (𝑖𝐼 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
128127adantlr 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → (𝑖𝐼 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
12949, 128jca 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → (𝑥𝑖 ∧ (𝑖𝐼 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
130 an12 627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥𝑖 ∧ (𝑖𝐼 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))) ↔ (𝑖𝐼 ∧ (𝑥𝑖 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
131 annim 392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥𝑖 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)) ↔ ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
132131anbi2i 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖𝐼 ∧ (𝑥𝑖 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))) ↔ (𝑖𝐼 ∧ ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
133130, 132bitri 266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥𝑖 ∧ (𝑖𝐼 ∧ ¬ ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))) ↔ (𝑖𝐼 ∧ ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
134129, 133sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → (𝑖𝐼 ∧ ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
135 rspe 3190 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖𝐼 ∧ ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))) → ∃𝑖𝐼 ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
136134, 135syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → ∃𝑖𝐼 ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
137 rexnal 3182 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑖𝐼 ¬ (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)) ↔ ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
138136, 137sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
139138exp41 423 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑐 ∈ ℝ → (𝑥 < 𝑐 → (𝑖 = (𝑥[,)𝑐) → ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))))
140139com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ ℝ → (𝑥 < 𝑐 → (𝑖 = (𝑥[,)𝑐) → (𝑥 ∈ ℝ → ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))))
141140imp41 414 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
142 rspe 3190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))) → ∃𝑥 ∈ ℝ ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
14334, 141, 142syl2anc 575 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ∃𝑥 ∈ ℝ ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
144 rexnal 3182 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑥 ∈ ℝ ¬ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
145143, 144sylib 209 . . . . . . . . . . . . . . . . . . . 20 ((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑥 ∈ ℝ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
146 df-ico 12395 . . . . . . . . . . . . . . . . . . . . . . . . 25 [,) = (𝑚 ∈ ℝ*, 𝑛 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑚𝑧𝑧 < 𝑛)})
147146ixxex 12400 . . . . . . . . . . . . . . . . . . . . . . . 24 [,) ∈ V
148 imaexg 7329 . . . . . . . . . . . . . . . . . . . . . . . 24 ([,) ∈ V → ([,) “ (ℝ × ℝ)) ∈ V)
149147, 148ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ([,) “ (ℝ × ℝ)) ∈ V
1501, 149eqeltri 2881 . . . . . . . . . . . . . . . . . . . . . 22 𝐼 ∈ V
1511icoreunrn 33518 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ = 𝐼
152 unirnioo 12488 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ = ran (,)
153151, 152eqtr3i 2830 . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ran (,)
154 tgss2 21001 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ V ∧ 𝐼 = ran (,)) → ((topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ∀𝑥 𝐼𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖))))
155150, 153, 154mp2an 675 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ∀𝑥 𝐼𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
156151raleqi 3331 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ ℝ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)) ↔ ∀𝑥 𝐼𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
157155, 156bitr4i 269 . . . . . . . . . . . . . . . . . . . 20 ((topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ∀𝑥 ∈ ℝ ∀𝑖𝐼 (𝑥𝑖 → ∃𝑜 ∈ ran (,)(𝑥𝑜𝑜𝑖)))
158145, 157sylnibr 320 . . . . . . . . . . . . . . . . . . 19 ((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
159158sbcth 3648 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → [1 / 𝑥]((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
1607, 159ax-mp 5 . . . . . . . . . . . . . . . . 17 [1 / 𝑥]((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
161 sbcimg 3675 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℝ → ([1 / 𝑥]((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([1 / 𝑥](((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → [1 / 𝑥] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))))
1627, 161ax-mp 5 . . . . . . . . . . . . . . . . 17 ([1 / 𝑥]((((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([1 / 𝑥](((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → [1 / 𝑥] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
163160, 162mpbi 221 . . . . . . . . . . . . . . . 16 ([1 / 𝑥](((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) → [1 / 𝑥] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
164 sbcel1v 3692 . . . . . . . . . . . . . . . . . 18 ([1 / 𝑥]𝑥 ∈ ℝ ↔ 1 ∈ ℝ)
1657, 164mpbir 222 . . . . . . . . . . . . . . . . 17 [1 / 𝑥]𝑥 ∈ ℝ
166 sbcan 3676 . . . . . . . . . . . . . . . . 17 ([1 / 𝑥](((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) ↔ ([1 / 𝑥]((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ [1 / 𝑥]𝑥 ∈ ℝ))
167165, 166mpbiran2 692 . . . . . . . . . . . . . . . 16 ([1 / 𝑥](((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) ∧ 𝑥 ∈ ℝ) ↔ [1 / 𝑥]((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)))
168 sbcg 3699 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → ([1 / 𝑥] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
1697, 168ax-mp 5 . . . . . . . . . . . . . . . 16 ([1 / 𝑥] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
170163, 167, 1693imtr3i 282 . . . . . . . . . . . . . . 15 ([1 / 𝑥]((𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ 𝑖 = (𝑥[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
17133, 170sylbir 226 . . . . . . . . . . . . . 14 (([1 / 𝑥](𝑐 ∈ ℝ ∧ 𝑥 < 𝑐) ∧ [1 / 𝑥]𝑖 = (𝑥[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
17221, 32, 171syl2anbr 588 . . . . . . . . . . . . 13 (((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
173172sbcth 3648 . . . . . . . . . . . 12 ((1[,)𝑐) ∈ V → [(1[,)𝑐) / 𝑖](((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
1745, 173ax-mp 5 . . . . . . . . . . 11 [(1[,)𝑐) / 𝑖](((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
175 sbcimg 3675 . . . . . . . . . . . 12 ((1[,)𝑐) ∈ V → ([(1[,)𝑐) / 𝑖](((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([(1[,)𝑐) / 𝑖]((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → [(1[,)𝑐) / 𝑖] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))))
1765, 175ax-mp 5 . . . . . . . . . . 11 ([(1[,)𝑐) / 𝑖](((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([(1[,)𝑐) / 𝑖]((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → [(1[,)𝑐) / 𝑖] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
177174, 176mpbi 221 . . . . . . . . . 10 ([(1[,)𝑐) / 𝑖]((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) → [(1[,)𝑐) / 𝑖] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
178 sbcan 3676 . . . . . . . . . . 11 ([(1[,)𝑐) / 𝑖]((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) ↔ ([(1[,)𝑐) / 𝑖](𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ [(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐)))
179 eqid 2806 . . . . . . . . . . . . 13 (1[,)𝑐) = (1[,)𝑐)
180 eqsbc3 3673 . . . . . . . . . . . . . 14 ((1[,)𝑐) ∈ V → ([(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐) ↔ (1[,)𝑐) = (1[,)𝑐)))
1815, 180ax-mp 5 . . . . . . . . . . . . 13 ([(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐) ↔ (1[,)𝑐) = (1[,)𝑐))
182179, 181mpbir 222 . . . . . . . . . . . 12 [(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐)
183 sbcg 3699 . . . . . . . . . . . . . 14 ((1[,)𝑐) ∈ V → ([(1[,)𝑐) / 𝑖](𝑐 ∈ ℝ ∧ 1 < 𝑐) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐)))
1845, 183ax-mp 5 . . . . . . . . . . . . 13 ([(1[,)𝑐) / 𝑖](𝑐 ∈ ℝ ∧ 1 < 𝑐) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐))
185184anbi1i 612 . . . . . . . . . . . 12 (([(1[,)𝑐) / 𝑖](𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ [(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐)) ↔ ((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ [(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐)))
186182, 185mpbiran2 692 . . . . . . . . . . 11 (([(1[,)𝑐) / 𝑖](𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ [(1[,)𝑐) / 𝑖]𝑖 = (1[,)𝑐)) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐))
187178, 186bitri 266 . . . . . . . . . 10 ([(1[,)𝑐) / 𝑖]((𝑐 ∈ ℝ ∧ 1 < 𝑐) ∧ 𝑖 = (1[,)𝑐)) ↔ (𝑐 ∈ ℝ ∧ 1 < 𝑐))
188 sbcg 3699 . . . . . . . . . . 11 ((1[,)𝑐) ∈ V → ([(1[,)𝑐) / 𝑖] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
1895, 188ax-mp 5 . . . . . . . . . 10 ([(1[,)𝑐) / 𝑖] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
190177, 187, 1893imtr3i 282 . . . . . . . . 9 ((𝑐 ∈ ℝ ∧ 1 < 𝑐) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
191190sbcth 3648 . . . . . . . 8 (2 ∈ ℝ → [2 / 𝑐]((𝑐 ∈ ℝ ∧ 1 < 𝑐) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
1923, 191ax-mp 5 . . . . . . 7 [2 / 𝑐]((𝑐 ∈ ℝ ∧ 1 < 𝑐) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
193 sbcimg 3675 . . . . . . . 8 (2 ∈ ℝ → ([2 / 𝑐]((𝑐 ∈ ℝ ∧ 1 < 𝑐) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([2 / 𝑐](𝑐 ∈ ℝ ∧ 1 < 𝑐) → [2 / 𝑐] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))))
1943, 193ax-mp 5 . . . . . . 7 ([2 / 𝑐]((𝑐 ∈ ℝ ∧ 1 < 𝑐) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))) ↔ ([2 / 𝑐](𝑐 ∈ ℝ ∧ 1 < 𝑐) → [2 / 𝑐] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
195192, 194mpbi 221 . . . . . 6 ([2 / 𝑐](𝑐 ∈ ℝ ∧ 1 < 𝑐) → [2 / 𝑐] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
196 sbcan 3676 . . . . . . 7 ([2 / 𝑐](𝑐 ∈ ℝ ∧ 1 < 𝑐) ↔ ([2 / 𝑐]𝑐 ∈ ℝ ∧ [2 / 𝑐]1 < 𝑐))
197 sbcel1v 3692 . . . . . . . 8 ([2 / 𝑐]𝑐 ∈ ℝ ↔ 2 ∈ ℝ)
198 sbcbr123 4898 . . . . . . . . 9 ([2 / 𝑐]1 < 𝑐2 / 𝑐12 / 𝑐 < 2 / 𝑐𝑐)
199 csbconstg 3741 . . . . . . . . . . 11 (2 ∈ ℝ → 2 / 𝑐1 = 1)
2003, 199ax-mp 5 . . . . . . . . . 10 2 / 𝑐1 = 1
201 csbvarg 4200 . . . . . . . . . . 11 (2 ∈ ℝ → 2 / 𝑐𝑐 = 2)
2023, 201ax-mp 5 . . . . . . . . . 10 2 / 𝑐𝑐 = 2
203200, 202breq12i 4853 . . . . . . . . 9 (2 / 𝑐12 / 𝑐 < 2 / 𝑐𝑐 ↔ 12 / 𝑐 < 2)
204 csbconstg 3741 . . . . . . . . . . 11 (2 ∈ ℝ → 2 / 𝑐 < = < )
2053, 204ax-mp 5 . . . . . . . . . 10 2 / 𝑐 < = <
206205breqi 4850 . . . . . . . . 9 (12 / 𝑐 < 2 ↔ 1 < 2)
207198, 203, 2063bitri 288 . . . . . . . 8 ([2 / 𝑐]1 < 𝑐 ↔ 1 < 2)
208197, 207anbi12i 614 . . . . . . 7 (([2 / 𝑐]𝑐 ∈ ℝ ∧ [2 / 𝑐]1 < 𝑐) ↔ (2 ∈ ℝ ∧ 1 < 2))
209196, 208bitri 266 . . . . . 6 ([2 / 𝑐](𝑐 ∈ ℝ ∧ 1 < 𝑐) ↔ (2 ∈ ℝ ∧ 1 < 2))
210 sbcg 3699 . . . . . . 7 (2 ∈ ℝ → ([2 / 𝑐] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))))
2113, 210ax-mp 5 . . . . . 6 ([2 / 𝑐] ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)) ↔ ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
212195, 209, 2113imtr3i 282 . . . . 5 ((2 ∈ ℝ ∧ 1 < 2) → ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,)))
2133, 4, 212mp2an 675 . . . 4 ¬ (topGen‘𝐼) ⊆ (topGen‘ran (,))
214 eqimss 3854 . . . 4 ((topGen‘𝐼) = (topGen‘ran (,)) → (topGen‘𝐼) ⊆ (topGen‘ran (,)))
215213, 214mto 188 . . 3 ¬ (topGen‘𝐼) = (topGen‘ran (,))
216215nesymir 3036 . 2 (topGen‘ran (,)) ≠ (topGen‘𝐼)
217 df-pss 3785 . 2 ((topGen‘ran (,)) ⊊ (topGen‘𝐼) ↔ ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ∧ (topGen‘ran (,)) ≠ (topGen‘𝐼)))
2182, 216, 217mpbir2an 693 1 (topGen‘ran (,)) ⊊ (topGen‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100  wal 1635   = wceq 1637  wex 1859  wcel 2156  wne 2978  wral 3096  wrex 3097  {crab 3100  Vcvv 3391  [wsbc 3633  csb 3728  wss 3769  wpss 3770  𝒫 cpw 4351  cop 4376   cuni 4630   class class class wbr 4844   × cxp 5309  dom cdm 5311  ran crn 5312  cima 5314  Fun wfun 6091   Fn wfn 6092  wf 6093  cfv 6097  (class class class)co 6870  cr 10216  1c1 10218  *cxr 10354   < clt 10355  cle 10356  2c2 11352  (,)cioo 12389  [,)cico 12391  topGenctg 16299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-2 11360  df-ioo 12393  df-ico 12395  df-topgen 16305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator