MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexdv Structured version   Visualization version   GIF version

Theorem nexdv 1936
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
Hypothesis
Ref Expression
nexdv.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
nexdv (𝜑 → ¬ ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem nexdv
StepHypRef Expression
1 ax-5 1910 . 2 (𝜑 → ∀𝑥𝜑)
2 nexdv.1 . 2 (𝜑 → ¬ 𝜓)
31, 2nexdh 1865 1 (𝜑 → ¬ ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  sbc2or  3759  csbopab  5510  relimasn  6045  csbiota  6492  0mpo0  7452  1sdom2dom  9170  canthwdom  9508  cfsuc  10186  ssfin4  10239  konigthlem  10497  axunndlem1  10524  canthnum  10578  canthwe  10580  pwfseq  10593  tskuni  10712  ptcmplem4  23918  lgsquadlem3  27269  umgredgnlp  29050  iswspthsnon  29759  acycgr0v  35108  acycgr2v  35110  prclisacycgr  35111  dfrdg4  35912
  Copyright terms: Public domain W3C validator