![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
Ref | Expression |
---|---|
nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1908 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | nexdh 1863 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: sbc2or 3800 csbopab 5565 relimasn 6105 csbiota 6556 0mpo0 7516 1sdom2dom 9281 canthwdom 9617 cfsuc 10295 ssfin4 10348 konigthlem 10606 axunndlem1 10633 canthnum 10687 canthwe 10689 pwfseq 10702 tskuni 10821 ptcmplem4 24079 lgsquadlem3 27441 umgredgnlp 29179 iswspthsnon 29886 acycgr0v 35133 acycgr2v 35135 prclisacycgr 35136 dfrdg4 35933 |
Copyright terms: Public domain | W3C validator |