![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
Ref | Expression |
---|---|
nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | nexdh 1868 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: sbc2or 3785 csbopab 5554 relimasn 6080 csbiota 6533 0mpo0 7488 1sdom2dom 9243 canthwdom 9570 cfsuc 10248 ssfin4 10301 konigthlem 10559 axunndlem1 10586 canthnum 10640 canthwe 10642 pwfseq 10655 tskuni 10774 ptcmplem4 23550 lgsquadlem3 26874 umgredgnlp 28396 iswspthsnon 29099 acycgr0v 34127 acycgr2v 34129 prclisacycgr 34130 dfrdg4 34911 |
Copyright terms: Public domain | W3C validator |