MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexdv Structured version   Visualization version   GIF version

Theorem nexdv 1939
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
Hypothesis
Ref Expression
nexdv.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
nexdv (𝜑 → ¬ ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem nexdv
StepHypRef Expression
1 ax-5 1913 . 2 (𝜑 → ∀𝑥𝜑)
2 nexdv.1 . 2 (𝜑 → ¬ 𝜓)
31, 2nexdh 1868 1 (𝜑 → ¬ ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  sbc2or  3725  csbopab  5468  relimasn  5992  csbiota  6426  0mpo0  7358  canthwdom  9338  cfsuc  10013  ssfin4  10066  konigthlem  10324  axunndlem1  10351  canthnum  10405  canthwe  10407  pwfseq  10420  tskuni  10539  ptcmplem4  23206  lgsquadlem3  26530  umgredgnlp  27517  iswspthsnon  28221  acycgr0v  33110  acycgr2v  33112  prclisacycgr  33113  dfrdg4  34253
  Copyright terms: Public domain W3C validator