![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
Ref | Expression |
---|---|
nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | nexdh 1869 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: sbc2or 3787 csbopab 5556 relimasn 6084 csbiota 6537 0mpo0 7492 1sdom2dom 9247 canthwdom 9574 cfsuc 10252 ssfin4 10305 konigthlem 10563 axunndlem1 10590 canthnum 10644 canthwe 10646 pwfseq 10659 tskuni 10778 ptcmplem4 23559 lgsquadlem3 26885 umgredgnlp 28407 iswspthsnon 29110 acycgr0v 34139 acycgr2v 34141 prclisacycgr 34142 dfrdg4 34923 |
Copyright terms: Public domain | W3C validator |