| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1865 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: sbc2or 3751 csbopab 5498 relimasn 6036 csbiota 6475 0mpo0 7432 1sdom2dom 9143 canthwdom 9471 cfsuc 10151 ssfin4 10204 konigthlem 10462 axunndlem1 10489 canthnum 10543 canthwe 10545 pwfseq 10558 tskuni 10677 ptcmplem4 23940 lgsquadlem3 27291 umgredgnlp 29092 iswspthsnon 29801 acycgr0v 35125 acycgr2v 35127 prclisacycgr 35128 dfrdg4 35929 |
| Copyright terms: Public domain | W3C validator |