| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1865 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: sbc2or 3779 csbopab 5535 relimasn 6077 csbiota 6529 0mpo0 7495 1sdom2dom 9260 canthwdom 9598 cfsuc 10276 ssfin4 10329 konigthlem 10587 axunndlem1 10614 canthnum 10668 canthwe 10670 pwfseq 10683 tskuni 10802 ptcmplem4 23998 lgsquadlem3 27350 umgredgnlp 29131 iswspthsnon 29843 acycgr0v 35175 acycgr2v 35177 prclisacycgr 35178 dfrdg4 35974 |
| Copyright terms: Public domain | W3C validator |