| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1866 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: sbc2or 3745 csbopab 5493 csbiota 6474 0mpo0 7429 1sdom2dom 9138 canthwdom 9465 cfsuc 10148 ssfin4 10201 konigthlem 10459 axunndlem1 10486 canthnum 10540 canthwe 10542 pwfseq 10555 tskuni 10674 ptcmplem4 23970 lgsquadlem3 27320 umgredgnlp 29125 iswspthsnon 29834 acycgr0v 35192 acycgr2v 35194 prclisacycgr 35195 dfrdg4 35995 |
| Copyright terms: Public domain | W3C validator |