| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1865 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: sbc2or 3762 csbopab 5515 relimasn 6056 csbiota 6504 0mpo0 7472 1sdom2dom 9194 canthwdom 9532 cfsuc 10210 ssfin4 10263 konigthlem 10521 axunndlem1 10548 canthnum 10602 canthwe 10604 pwfseq 10617 tskuni 10736 ptcmplem4 23942 lgsquadlem3 27293 umgredgnlp 29074 iswspthsnon 29786 acycgr0v 35135 acycgr2v 35137 prclisacycgr 35138 dfrdg4 35939 |
| Copyright terms: Public domain | W3C validator |