|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) | 
| Ref | Expression | 
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1864 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: sbc2or 3796 csbopab 5559 relimasn 6102 csbiota 6553 0mpo0 7517 1sdom2dom 9284 canthwdom 9620 cfsuc 10298 ssfin4 10351 konigthlem 10609 axunndlem1 10636 canthnum 10690 canthwe 10692 pwfseq 10705 tskuni 10824 ptcmplem4 24064 lgsquadlem3 27427 umgredgnlp 29165 iswspthsnon 29877 acycgr0v 35154 acycgr2v 35156 prclisacycgr 35157 dfrdg4 35953 | 
| Copyright terms: Public domain | W3C validator |