![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
Ref | Expression |
---|---|
nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | nexdh 1864 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: sbc2or 3813 csbopab 5574 relimasn 6114 csbiota 6566 0mpo0 7533 1sdom2dom 9310 canthwdom 9648 cfsuc 10326 ssfin4 10379 konigthlem 10637 axunndlem1 10664 canthnum 10718 canthwe 10720 pwfseq 10733 tskuni 10852 ptcmplem4 24084 lgsquadlem3 27444 umgredgnlp 29182 iswspthsnon 29889 acycgr0v 35116 acycgr2v 35118 prclisacycgr 35119 dfrdg4 35915 |
Copyright terms: Public domain | W3C validator |