| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nexdv | Structured version Visualization version GIF version | ||
| Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 13-Jul-2020.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| nexdv.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nexdv | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | nexdv.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 3 | 1, 2 | nexdh 1865 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: sbc2or 3759 csbopab 5510 relimasn 6045 csbiota 6492 0mpo0 7452 1sdom2dom 9170 canthwdom 9508 cfsuc 10186 ssfin4 10239 konigthlem 10497 axunndlem1 10524 canthnum 10578 canthwe 10580 pwfseq 10593 tskuni 10712 ptcmplem4 23918 lgsquadlem3 27269 umgredgnlp 29050 iswspthsnon 29759 acycgr0v 35108 acycgr2v 35110 prclisacycgr 35111 dfrdg4 35912 |
| Copyright terms: Public domain | W3C validator |