| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfcxfrdf | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| nfcxfrdf.0 | ⊢ Ⅎ𝑥𝜑 |
| nfcxfrdf.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| nfcxfrdf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcxfrdf | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcxfrdf.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | nfcxfrdf.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfcxfrdf.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | nfceqdf 2895 | . 2 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-cleq 2728 df-nfc 2886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |