Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfcxfrdf | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.) |
Ref | Expression |
---|---|
nfcxfrdf.0 | ⊢ Ⅎ𝑥𝜑 |
nfcxfrdf.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
nfcxfrdf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrdf | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrdf.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfcxfrdf.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | nfcxfrdf.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | nfceqdf 2902 | . 2 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1786 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |