Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfcxfrdf | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.) |
Ref | Expression |
---|---|
nfcxfrdf.0 | ⊢ Ⅎ𝑥𝜑 |
nfcxfrdf.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
nfcxfrdf.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcxfrdf | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrdf.2 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | nfcxfrdf.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | nfcxfrdf.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 2, 3 | nfceqdf 2901 | . 2 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1787 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-cleq 2730 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |