Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfded Structured version   Visualization version   GIF version

Theorem nfded 36908
Description: A deduction theorem that converts a not-free inference directly to deduction form. The first hypothesis is the hypothesis of the deduction form. The second is an equality deduction (e.g., (𝑥𝐴 {𝑦 ∣ ∀𝑥𝑦𝐴} = 𝐴)) that starts from abidnf 3633. The last is assigned to the inference form (e.g., 𝑥 {𝑦 ∣ ∀𝑥𝑦𝐴}) whose hypothesis is satisfied using nfaba1 2914. (Contributed by NM, 19-Nov-2020.)
Hypotheses
Ref Expression
nfded.1 (𝜑𝑥𝐴)
nfded.2 (𝑥𝐴𝐵 = 𝐶)
nfded.3 𝑥𝐵
Assertion
Ref Expression
nfded (𝜑𝑥𝐶)

Proof of Theorem nfded
StepHypRef Expression
1 nfded.3 . 2 𝑥𝐵
2 nfded.1 . . 3 (𝜑𝑥𝐴)
3 nfnfc1 2909 . . . 4 𝑥𝑥𝐴
4 nfded.2 . . . 4 (𝑥𝐴𝐵 = 𝐶)
53, 4nfceqdf 2901 . . 3 (𝑥𝐴 → (𝑥𝐵𝑥𝐶))
62, 5syl 17 . 2 (𝜑 → (𝑥𝐵𝑥𝐶))
71, 6mpbii 232 1 (𝜑𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-cleq 2730  df-nfc 2888
This theorem is referenced by:  nfunidALT  36911
  Copyright terms: Public domain W3C validator