MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Structured version   Visualization version   GIF version

Definition df-nfc 2895
Description: Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1782 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
31, 2wnfc 2893 . 2 wff 𝑥𝐴
4 vy . . . . . 6 setvar 𝑦
54cv 1536 . . . . 5 class 𝑦
65, 2wcel 2108 . . . 4 wff 𝑦𝐴
76, 1wnf 1781 . . 3 wff 𝑥 𝑦𝐴
87, 4wal 1535 . 2 wff 𝑦𝑥 𝑦𝐴
93, 8wb 206 1 wff (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  nfci  2896  nfcr  2898  nfcrALT  2899  nfcd  2901  nfceqdf  2904  nfceqi  2905  nfnfc1  2911  nfeqd  2919  nfnfc  2921  drnfc1  2928  drnfc1OLD  2929  drnfc2  2930  drnfc2OLD  2931  dfnfc2  4953  nfnid  5393  nfriotadw  7412  bj-nfcf  36889
  Copyright terms: Public domain W3C validator