MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Structured version   Visualization version   GIF version

Definition df-nfc 2885
Description: Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1786 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
31, 2wnfc 2883 . 2 wff 𝑥𝐴
4 vy . . . . . 6 setvar 𝑦
54cv 1540 . . . . 5 class 𝑦
65, 2wcel 2106 . . . 4 wff 𝑦𝐴
76, 1wnf 1785 . . 3 wff 𝑥 𝑦𝐴
87, 4wal 1539 . 2 wff 𝑦𝑥 𝑦𝐴
93, 8wb 205 1 wff (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  nfci  2886  nfcr  2888  nfcrALT  2889  nfcd  2891  nfcriOLD  2893  nfcriOLDOLD  2894  nfceqdf  2898  nfceqdfOLD  2899  nfceqi  2900  nfnfc1  2906  nfeqd  2913  nfnfc  2915  drnfc1  2922  drnfc1OLD  2923  drnfc2  2924  drnfc2OLD  2925  dfnfc2  4933  nfnid  5373  nfriotadw  7375  bj-nfcf  36106
  Copyright terms: Public domain W3C validator