MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Structured version   Visualization version   GIF version

Definition df-nfc 2889
Description: Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1792 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
31, 2wnfc 2887 . 2 wff 𝑥𝐴
4 vy . . . . . 6 setvar 𝑦
54cv 1542 . . . . 5 class 𝑦
65, 2wcel 2112 . . . 4 wff 𝑦𝐴
76, 1wnf 1791 . . 3 wff 𝑥 𝑦𝐴
87, 4wal 1541 . 2 wff 𝑦𝑥 𝑦𝐴
93, 8wb 209 1 wff (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  nfci  2890  nfcr  2892  nfcrALT  2893  nfcd  2895  nfcriOLD  2897  nfcriOLDOLD  2898  nfceqdf  2902  nfceqdfOLD  2903  nfceqi  2904  nfnfc1  2910  nfeqd  2917  nfnfc  2919  drnfc1  2926  drnfc1OLD  2927  drnfc2  2928  drnfc2OLD  2929  dfnfc2  4860  nfnid  5292  nfriotadw  7217  bj-nfcf  35013
  Copyright terms: Public domain W3C validator