![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nfc | Structured version Visualization version GIF version |
Description: Define the not-free predicate for classes. This is read "𝑥 is not free in 𝐴". Not-free means that the value of 𝑥 cannot affect the value of 𝐴, e.g., any occurrence of 𝑥 in 𝐴 is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1782 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
df-nfc | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | 1, 2 | wnfc 2893 | . 2 wff Ⅎ𝑥𝐴 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1536 | . . . . 5 class 𝑦 |
6 | 5, 2 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐴 |
7 | 6, 1 | wnf 1781 | . . 3 wff Ⅎ𝑥 𝑦 ∈ 𝐴 |
8 | 7, 4 | wal 1535 | . 2 wff ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
9 | 3, 8 | wb 206 | 1 wff (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
This definition is referenced by: nfci 2896 nfcr 2898 nfcrALT 2899 nfcd 2901 nfceqdf 2904 nfceqi 2905 nfnfc1 2911 nfeqd 2919 nfnfc 2921 drnfc1 2928 drnfc1OLD 2929 drnfc2 2930 drnfc2OLD 2931 dfnfc2 4953 nfnid 5393 nfriotadw 7412 bj-nfcf 36889 |
Copyright terms: Public domain | W3C validator |