MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfceqdf Structured version   Visualization version   GIF version

Theorem nfceqdf 2901
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) Avoid ax-8 2110 and df-clel 2817. (Revised by WL and SN, 23-Aug-2024.)
Hypotheses
Ref Expression
nfceqdf.1 𝑥𝜑
nfceqdf.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
nfceqdf (𝜑 → (𝑥𝐴𝑥𝐵))

Proof of Theorem nfceqdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4 𝑥𝜑
2 nfceqdf.2 . . . . 5 (𝜑𝐴 = 𝐵)
3 eleq2w2 2734 . . . . 5 (𝐴 = 𝐵 → (𝑦𝐴𝑦𝐵))
42, 3syl 17 . . . 4 (𝜑 → (𝑦𝐴𝑦𝐵))
51, 4nfbidf 2220 . . 3 (𝜑 → (Ⅎ𝑥 𝑦𝐴 ↔ Ⅎ𝑥 𝑦𝐵))
65albidv 1924 . 2 (𝜑 → (∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑦𝑥 𝑦𝐵))
7 df-nfc 2888 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
8 df-nfc 2888 . 2 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
96, 7, 83bitr4g 313 1 (𝜑 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-cleq 2730  df-nfc 2888
This theorem is referenced by:  nfopd  4818  dfnfc2  4860  nfimad  5967  nffvd  6768  riotasv2d  36898  nfcxfrdf  36907  nfded  36908  nfded2  36909  nfunidALT2  36910
  Copyright terms: Public domain W3C validator