Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfceqdf | Structured version Visualization version GIF version |
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.) Avoid ax-8 2112 and df-clel 2818. (Revised by WL and SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
nfceqdf.1 | ⊢ Ⅎ𝑥𝜑 |
nfceqdf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
nfceqdf | ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfceqdf.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | eleq2w2 2736 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
5 | 1, 4 | nfbidf 2221 | . . 3 ⊢ (𝜑 → (Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐵)) |
6 | 5 | albidv 1927 | . 2 ⊢ (𝜑 → (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵)) |
7 | df-nfc 2891 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
8 | df-nfc 2891 | . 2 ⊢ (Ⅎ𝑥𝐵 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐵) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Ⅎ𝑥𝐴 ↔ Ⅎ𝑥𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2110 Ⅎwnfc 2889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 df-cleq 2732 df-nfc 2891 |
This theorem is referenced by: nfopd 4827 dfnfc2 4869 nfimad 5976 nffvd 6781 riotasv2d 36965 nfcxfrdf 36974 nfded 36975 nfded2 36976 nfunidALT2 36977 |
Copyright terms: Public domain | W3C validator |