Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dedths2 Structured version   Visualization version   GIF version

Theorem dedths2 38921
Description: Generalization of dedths 38918 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
Hypothesis
Ref Expression
dedths2.1 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
Assertion
Ref Expression
dedths2 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem dedths2
StepHypRef Expression
1 dfsbcq 3806 . 2 (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜓[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓))
2 dedths2.1 . 2 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
31, 2dedth 4606 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsbc 3804  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-if 4549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator