![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfnaew 2149 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2441 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | 1 | nfn 1856 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfald2 2453 dvelimf 2456 sbequ6 2474 2ax6elem 2478 nfsb4t 2507 sbco2 2519 sbco3 2521 sb9 2527 sbal1 2536 sbal2 2537 nfabd2 2935 ralcom2 3385 dfid3 5596 nfriotad 7416 axextnd 10660 axrepndlem1 10661 axrepndlem2 10662 axrepnd 10663 axunndlem1 10664 axunnd 10665 axpowndlem2 10667 axpowndlem3 10668 axpowndlem4 10669 axpownd 10670 axregndlem2 10672 axregnd 10673 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 axnulg 35068 axextdist 35763 axextbdist 35764 distel 35767 wl-cbvalnaed 37486 wl-2sb6d 37512 wl-sbalnae 37516 wl-mo2df 37524 wl-mo2tf 37525 wl-eudf 37526 wl-eutf 37527 ax6e2ndeq 44530 ax6e2ndeqVD 44880 |
Copyright terms: Public domain | W3C validator |