| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfnaew 2150 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2438 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1857 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfald2 2450 dvelimf 2453 sbequ6 2471 2ax6elem 2475 nfsb4t 2504 sbco2 2516 sbco3 2518 sb9 2524 sbal1 2533 sbal2 2534 nfabd2 2923 ralcom2 3361 dfid3 5556 nfriotad 7378 axextnd 10610 axrepndlem1 10611 axrepndlem2 10612 axrepnd 10613 axunndlem1 10614 axunnd 10615 axpowndlem2 10617 axpowndlem3 10618 axpowndlem4 10619 axpownd 10620 axregndlem2 10622 axregnd 10623 axinfndlem1 10624 axinfnd 10625 axacndlem4 10629 axacndlem5 10630 axacnd 10631 axnulg 35128 axextdist 35822 axextbdist 35823 distel 35826 wl-cbvalnaed 37555 wl-2sb6d 37581 wl-sbalnae 37585 wl-mo2df 37593 wl-mo2tf 37594 wl-eudf 37595 wl-eutf 37596 ax6e2ndeq 44551 ax6e2ndeqVD 44900 |
| Copyright terms: Public domain | W3C validator |