| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfnaew 2150 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2431 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1857 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfald2 2443 dvelimf 2446 sbequ6 2464 2ax6elem 2468 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 nfabd2 2915 ralcom2 3351 dfid3 5536 nfriotad 7355 axextnd 10544 axrepndlem1 10545 axrepndlem2 10546 axrepnd 10547 axunndlem1 10548 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axpownd 10554 axregndlem2 10556 axregnd 10557 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 axnulg 35082 axextdist 35787 axextbdist 35788 distel 35791 wl-cbvalnaed 37520 wl-2sb6d 37546 wl-sbalnae 37550 wl-mo2df 37558 wl-mo2tf 37559 wl-eudf 37560 wl-eutf 37561 ax6e2ndeq 44549 ax6e2ndeqVD 44898 |
| Copyright terms: Public domain | W3C validator |