Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfnaew 2147 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2433 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | 1 | nfn 1861 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfald2 2445 dvelimf 2448 sbequ6 2466 2ax6elem 2470 nfsb4t 2503 sbco2 2515 sbco3 2517 sb9 2523 sbal1 2533 sbal2 2534 nfabd2 2932 ralcom2 3288 dfid3 5483 nfriotad 7224 axextnd 10278 axrepndlem1 10279 axrepndlem2 10280 axrepnd 10281 axunndlem1 10282 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axpownd 10288 axregndlem2 10290 axregnd 10291 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 axextdist 33681 axextbdist 33682 distel 33685 wl-cbvalnaed 35618 wl-2sb6d 35640 wl-sbalnae 35644 wl-mo2df 35652 wl-mo2tf 35653 wl-eudf 35654 wl-eutf 35655 ax6e2ndeq 42068 ax6e2ndeqVD 42418 |
Copyright terms: Public domain | W3C validator |