![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfnaew 2145 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2432 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | 1 | nfn 1860 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1539 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 |
This theorem is referenced by: nfald2 2444 dvelimf 2447 sbequ6 2465 2ax6elem 2469 nfsb4t 2498 sbco2 2510 sbco3 2512 sb9 2518 sbal1 2527 sbal2 2528 nfabd2 2929 ralcom2 3373 dfid3 5577 nfriotad 7376 axextnd 10585 axrepndlem1 10586 axrepndlem2 10587 axrepnd 10588 axunndlem1 10589 axunnd 10590 axpowndlem2 10592 axpowndlem3 10593 axpowndlem4 10594 axpownd 10595 axregndlem2 10597 axregnd 10598 axinfndlem1 10599 axinfnd 10600 axacndlem4 10604 axacndlem5 10605 axacnd 10606 axextdist 34766 axextbdist 34767 distel 34770 wl-cbvalnaed 36396 wl-2sb6d 36418 wl-sbalnae 36422 wl-mo2df 36430 wl-mo2tf 36431 wl-eudf 36432 wl-eutf 36433 ax6e2ndeq 43310 ax6e2ndeqVD 43660 |
Copyright terms: Public domain | W3C validator |