| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfnaew 2150 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2431 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1857 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfald2 2443 dvelimf 2446 sbequ6 2464 2ax6elem 2468 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 nfabd2 2915 ralcom2 3348 dfid3 5529 nfriotad 7337 axextnd 10520 axrepndlem1 10521 axrepndlem2 10522 axrepnd 10523 axunndlem1 10524 axunnd 10525 axpowndlem2 10527 axpowndlem3 10528 axpowndlem4 10529 axpownd 10530 axregndlem2 10532 axregnd 10533 axinfndlem1 10534 axinfnd 10535 axacndlem4 10539 axacndlem5 10540 axacnd 10541 axnulg 35075 axextdist 35780 axextbdist 35781 distel 35784 wl-cbvalnaed 37513 wl-2sb6d 37539 wl-sbalnae 37543 wl-mo2df 37551 wl-mo2tf 37552 wl-eudf 37553 wl-eutf 37554 ax6e2ndeq 44542 ax6e2ndeqVD 44891 |
| Copyright terms: Public domain | W3C validator |