| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfnaew 2150 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2431 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1857 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfald2 2443 dvelimf 2446 sbequ6 2464 2ax6elem 2468 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 nfabd2 2915 ralcom2 3348 dfid3 5529 nfriotad 7337 axextnd 10522 axrepndlem1 10523 axrepndlem2 10524 axrepnd 10525 axunndlem1 10526 axunnd 10527 axpowndlem2 10529 axpowndlem3 10530 axpowndlem4 10531 axpownd 10532 axregndlem2 10534 axregnd 10535 axinfndlem1 10536 axinfnd 10537 axacndlem4 10541 axacndlem5 10542 axacnd 10543 axnulg 35076 axextdist 35781 axextbdist 35782 distel 35785 wl-cbvalnaed 37514 wl-2sb6d 37540 wl-sbalnae 37544 wl-mo2df 37552 wl-mo2tf 37553 wl-eudf 37554 wl-eutf 37555 ax6e2ndeq 44543 ax6e2ndeqVD 44892 |
| Copyright terms: Public domain | W3C validator |