![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version |
Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker nfnaew 2137 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2424 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | 1 | nfn 1852 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1531 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 |
This theorem is referenced by: nfald2 2436 dvelimf 2439 sbequ6 2457 2ax6elem 2461 nfsb4t 2490 sbco2 2502 sbco3 2504 sb9 2510 sbal1 2519 sbal2 2520 nfabd2 2921 ralcom2 3365 dfid3 5568 nfriotad 7370 axextnd 10583 axrepndlem1 10584 axrepndlem2 10585 axrepnd 10586 axunndlem1 10587 axunnd 10588 axpowndlem2 10590 axpowndlem3 10591 axpowndlem4 10592 axpownd 10593 axregndlem2 10595 axregnd 10596 axinfndlem1 10597 axinfnd 10598 axacndlem4 10602 axacndlem5 10603 axacnd 10604 axextdist 35267 axextbdist 35268 distel 35271 wl-cbvalnaed 36892 wl-2sb6d 36917 wl-sbalnae 36921 wl-mo2df 36929 wl-mo2tf 36930 wl-eudf 36931 wl-eutf 36932 ax6e2ndeq 43834 ax6e2ndeqVD 44184 |
Copyright terms: Public domain | W3C validator |