| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfnaew 2152 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2433 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1858 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfald2 2445 dvelimf 2448 sbequ6 2466 2ax6elem 2470 nfsb4t 2499 sbco2 2511 sbco3 2513 sb9 2519 sbal1 2528 sbal2 2529 nfabd2 2918 ralcom2 3343 dfid3 5512 nfriotad 7314 axextnd 10482 axrepndlem1 10483 axrepndlem2 10484 axrepnd 10485 axunndlem1 10486 axunnd 10487 axpowndlem2 10489 axpowndlem3 10490 axpowndlem4 10491 axpownd 10492 axregndlem2 10494 axregnd 10495 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 axnulg 35119 axextdist 35841 axextbdist 35842 distel 35845 wl-cbvalnaed 37576 wl-2sb6d 37602 wl-sbalnae 37606 wl-mo2df 37614 wl-mo2tf 37615 wl-eudf 37616 wl-eutf 37617 ax6e2ndeq 44651 ax6e2ndeqVD 45000 |
| Copyright terms: Public domain | W3C validator |