| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnae | Structured version Visualization version GIF version | ||
| Description: All variables are effectively bound in a distinct variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfnaew 2150 when possible. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfnae | ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfae 2431 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
| 2 | 1 | nfn 1857 | 1 ⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfald2 2443 dvelimf 2446 sbequ6 2464 2ax6elem 2468 nfsb4t 2497 sbco2 2509 sbco3 2511 sb9 2517 sbal1 2526 sbal2 2527 nfabd2 2915 ralcom2 3340 dfid3 5517 nfriotad 7317 axextnd 10485 axrepndlem1 10486 axrepndlem2 10487 axrepnd 10488 axunndlem1 10489 axunnd 10490 axpowndlem2 10492 axpowndlem3 10493 axpowndlem4 10494 axpownd 10495 axregndlem2 10497 axregnd 10498 axinfndlem1 10499 axinfnd 10500 axacndlem4 10504 axacndlem5 10505 axacnd 10506 axnulg 35075 axextdist 35793 axextbdist 35794 distel 35797 wl-cbvalnaed 37526 wl-2sb6d 37552 wl-sbalnae 37556 wl-mo2df 37564 wl-mo2tf 37565 wl-eudf 37566 wl-eutf 37567 ax6e2ndeq 44553 ax6e2ndeqVD 44902 |
| Copyright terms: Public domain | W3C validator |