Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnbiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfnbi 1853 as of 6-Oct-2024. (Contributed by BJ, 6-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfnbiOLD | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 866 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) | |
2 | nf3 1784 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
3 | nf3 1784 | . . 3 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
4 | notnotb 314 | . . . . 5 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
5 | 4 | albii 1817 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑) |
6 | 5 | orbi2i 909 | . . 3 ⊢ ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) |
7 | 3, 6 | bitr4i 277 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) |
8 | 1, 2, 7 | 3bitr4i 302 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1778 df-nf 1782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |