MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnbiOLD Structured version   Visualization version   GIF version

Theorem nfnbiOLD 1854
Description: Obsolete version of nfnbi 1853 as of 6-Oct-2024. (Contributed by BJ, 6-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfnbiOLD (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem nfnbiOLD
StepHypRef Expression
1 orcom 866 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑))
2 nf3 1784 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
3 nf3 1784 . . 3 (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
4 notnotb 314 . . . . 5 (𝜑 ↔ ¬ ¬ 𝜑)
54albii 1817 . . . 4 (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑)
65orbi2i 909 . . 3 ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
73, 6bitr4i 277 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑))
81, 2, 73bitr4i 302 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 843  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator