MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfs1f Structured version   Visualization version   GIF version

Theorem nfs1f 2267
Description: If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfs1f.1 𝑥𝜑
Assertion
Ref Expression
nfs1f 𝑥[𝑦 / 𝑥]𝜑

Proof of Theorem nfs1f
StepHypRef Expression
1 nfs1f.1 . . 3 𝑥𝜑
21sbf 2263 . 2 ([𝑦 / 𝑥]𝜑𝜑)
32, 1nfxfr 1855 1 𝑥[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator