MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbs1 Structured version   Visualization version   GIF version

Theorem hbs1 2264
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
hbs1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbs1
StepHypRef Expression
1 nfs1v 2152 . 2 𝑥[𝑦 / 𝑥]𝜑
21nf5ri 2187 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by:  hbab1OLD  2718  sb5ALT  43748  2sb5ndVD  44133  sb5ALTVD  44136  2sb5ndALT  44155
  Copyright terms: Public domain W3C validator