MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbs1 Structured version   Visualization version   GIF version

Theorem hbs1 2274
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
hbs1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbs1
StepHypRef Expression
1 nfs1v 2161 . 2 𝑥[𝑦 / 𝑥]𝜑
21nf5ri 2197 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  [wsb 2074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-10 2145  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ex 1787  df-nf 1791  df-sb 2075
This theorem is referenced by:  hbab1  2724  sb5ALT  41683  2sb5ndVD  42068  sb5ALTVD  42071  2sb5ndALT  42090
  Copyright terms: Public domain W3C validator