![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb5 | Structured version Visualization version GIF version |
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1 2067 and does not require any disjoint variable condition. Theorem sb5f 2503 replaces the disjoint variable condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sb5 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2299 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sb56 2297 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | bitr4i 270 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 ∃wex 1875 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-nf 1880 df-sb 2065 |
This theorem is referenced by: 2sb5 2301 sbnv 2326 sb7f 2573 sbelx 2577 sbc2or 3642 sbc5 3658 |
Copyright terms: Public domain | W3C validator |