MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5 Structured version   Visualization version   GIF version

Theorem sb5 2271
Description: Alternate definition of substitution when variables are disjoint. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1v 2091 and even needs no disjoint variable condition, see sb1 2479. Theorem sb5f 2502 replaces the disjoint variable condition with a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Revised by Wolf Lammen, 4-Sep-2023.)
Assertion
Ref Expression
sb5 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 2089 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbalex 2238 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31, 2bitr4i 277 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sb56OLD  2273  2sb5  2275  sb7f  2530  clelab  2882  sbc2or  3720  sbc5ALT  3740
  Copyright terms: Public domain W3C validator