Proof of Theorem nic-axALT
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . 6
⊢ ((𝜒 ∧ 𝜓) → 𝜒) |
| 2 | 1 | imim2i 16 |
. . . . 5
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → (𝜑 → 𝜒)) |
| 3 | | con3 153 |
. . . . . 6
⊢ ((𝜑 → 𝜒) → (¬ 𝜒 → ¬ 𝜑)) |
| 4 | 3 | imim2d 57 |
. . . . 5
⊢ ((𝜑 → 𝜒) → ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
| 5 | 2, 4 | syl 17 |
. . . 4
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
| 6 | | anidm 564 |
. . . . 5
⊢ ((𝜏 ∧ 𝜏) ↔ 𝜏) |
| 7 | 6 | biimpri 228 |
. . . 4
⊢ (𝜏 → (𝜏 ∧ 𝜏)) |
| 8 | 5, 7 | jctil 519 |
. . 3
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
| 9 | | df-nan 1492 |
. . . . . . . . 9
⊢ ((𝜒 ⊼ 𝜓) ↔ ¬ (𝜒 ∧ 𝜓)) |
| 10 | 9 | anbi2i 623 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜒 ⊼ 𝜓)) ↔ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
| 11 | 10 | notbii 320 |
. . . . . . 7
⊢ (¬
(𝜑 ∧ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
| 12 | | df-nan 1492 |
. . . . . . 7
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ (𝜒 ⊼ 𝜓))) |
| 13 | | iman 401 |
. . . . . . 7
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
| 14 | 11, 12, 13 | 3bitr4i 303 |
. . . . . 6
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ (𝜑 → (𝜒 ∧ 𝜓))) |
| 15 | | df-nan 1492 |
. . . . . . 7
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ¬ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |
| 16 | | df-nan 1492 |
. . . . . . . . . . 11
⊢ ((𝜏 ⊼ 𝜏) ↔ ¬ (𝜏 ∧ 𝜏)) |
| 17 | 16 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((𝜏 ∧ (𝜏 ⊼ 𝜏)) ↔ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
| 18 | 17 | notbii 320 |
. . . . . . . . 9
⊢ (¬
(𝜏 ∧ (𝜏 ⊼ 𝜏)) ↔ ¬ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
| 19 | | df-nan 1492 |
. . . . . . . . 9
⊢ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ↔ ¬ (𝜏 ∧ (𝜏 ⊼ 𝜏))) |
| 20 | | iman 401 |
. . . . . . . . 9
⊢ ((𝜏 → (𝜏 ∧ 𝜏)) ↔ ¬ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
| 21 | 18, 19, 20 | 3bitr4i 303 |
. . . . . . . 8
⊢ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ↔ (𝜏 → (𝜏 ∧ 𝜏))) |
| 22 | | df-nan 1492 |
. . . . . . . . . . . 12
⊢ ((𝜃 ⊼ 𝜒) ↔ ¬ (𝜃 ∧ 𝜒)) |
| 23 | | imnan 399 |
. . . . . . . . . . . 12
⊢ ((𝜃 → ¬ 𝜒) ↔ ¬ (𝜃 ∧ 𝜒)) |
| 24 | 22, 23 | bitr4i 278 |
. . . . . . . . . . 11
⊢ ((𝜃 ⊼ 𝜒) ↔ (𝜃 → ¬ 𝜒)) |
| 25 | | df-nan 1492 |
. . . . . . . . . . . 12
⊢ (((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)) ↔ ¬ ((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃))) |
| 26 | | anidm 564 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)) ↔ (𝜑 ⊼ 𝜃)) |
| 27 | | df-nan 1492 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ⊼ 𝜃) ↔ ¬ (𝜑 ∧ 𝜃)) |
| 28 | | imnan 399 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 → ¬ 𝜃) ↔ ¬ (𝜑 ∧ 𝜃)) |
| 29 | | con2b 359 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 → ¬ 𝜃) ↔ (𝜃 → ¬ 𝜑)) |
| 30 | 28, 29 | bitr3i 277 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∧ 𝜃) ↔ (𝜃 → ¬ 𝜑)) |
| 31 | 26, 27, 30 | 3bitri 297 |
. . . . . . . . . . . 12
⊢ (((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)) ↔ (𝜃 → ¬ 𝜑)) |
| 32 | 25, 31 | xchbinx 334 |
. . . . . . . . . . 11
⊢ (((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)) ↔ ¬ (𝜃 → ¬ 𝜑)) |
| 33 | 24, 32 | anbi12i 628 |
. . . . . . . . . 10
⊢ (((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
| 34 | 33 | notbii 320 |
. . . . . . . . 9
⊢ (¬
((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ¬ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
| 35 | | df-nan 1492 |
. . . . . . . . 9
⊢ (((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ¬ ((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) |
| 36 | | iman 401 |
. . . . . . . . 9
⊢ (((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)) ↔ ¬ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
| 37 | 34, 35, 36 | 3bitr4i 303 |
. . . . . . . 8
⊢ (((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
| 38 | 21, 37 | anbi12i 628 |
. . . . . . 7
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
| 39 | 15, 38 | xchbinx 334 |
. . . . . 6
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
| 40 | 14, 39 | anbi12i 628 |
. . . . 5
⊢ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
| 41 | 40 | notbii 320 |
. . . 4
⊢ (¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ¬ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
| 42 | | iman 401 |
. . . 4
⊢ (((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) ↔ ¬ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
| 43 | 41, 42 | bitr4i 278 |
. . 3
⊢ (¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
| 44 | 8, 43 | mpbir 231 |
. 2
⊢ ¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |
| 45 | | df-nan 1492 |
. 2
⊢ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ¬ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))))) |
| 46 | 44, 45 | mpbir 231 |
1
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |