Proof of Theorem nic-axALT
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . . . . 6
⊢ ((𝜒 ∧ 𝜓) → 𝜒) |
2 | 1 | imim2i 16 |
. . . . 5
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → (𝜑 → 𝜒)) |
3 | | con3 156 |
. . . . . 6
⊢ ((𝜑 → 𝜒) → (¬ 𝜒 → ¬ 𝜑)) |
4 | 3 | imim2d 57 |
. . . . 5
⊢ ((𝜑 → 𝜒) → ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
5 | 2, 4 | syl 17 |
. . . 4
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
6 | | anidm 568 |
. . . . 5
⊢ ((𝜏 ∧ 𝜏) ↔ 𝜏) |
7 | 6 | biimpri 231 |
. . . 4
⊢ (𝜏 → (𝜏 ∧ 𝜏)) |
8 | 5, 7 | jctil 523 |
. . 3
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
9 | | df-nan 1483 |
. . . . . . . . 9
⊢ ((𝜒 ⊼ 𝜓) ↔ ¬ (𝜒 ∧ 𝜓)) |
10 | 9 | anbi2i 625 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝜒 ⊼ 𝜓)) ↔ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
11 | 10 | notbii 323 |
. . . . . . 7
⊢ (¬
(𝜑 ∧ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
12 | | df-nan 1483 |
. . . . . . 7
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ (𝜒 ⊼ 𝜓))) |
13 | | iman 405 |
. . . . . . 7
⊢ ((𝜑 → (𝜒 ∧ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
14 | 11, 12, 13 | 3bitr4i 306 |
. . . . . 6
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ (𝜑 → (𝜒 ∧ 𝜓))) |
15 | | df-nan 1483 |
. . . . . . 7
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ¬ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |
16 | | df-nan 1483 |
. . . . . . . . . . 11
⊢ ((𝜏 ⊼ 𝜏) ↔ ¬ (𝜏 ∧ 𝜏)) |
17 | 16 | anbi2i 625 |
. . . . . . . . . 10
⊢ ((𝜏 ∧ (𝜏 ⊼ 𝜏)) ↔ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
18 | 17 | notbii 323 |
. . . . . . . . 9
⊢ (¬
(𝜏 ∧ (𝜏 ⊼ 𝜏)) ↔ ¬ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
19 | | df-nan 1483 |
. . . . . . . . 9
⊢ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ↔ ¬ (𝜏 ∧ (𝜏 ⊼ 𝜏))) |
20 | | iman 405 |
. . . . . . . . 9
⊢ ((𝜏 → (𝜏 ∧ 𝜏)) ↔ ¬ (𝜏 ∧ ¬ (𝜏 ∧ 𝜏))) |
21 | 18, 19, 20 | 3bitr4i 306 |
. . . . . . . 8
⊢ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ↔ (𝜏 → (𝜏 ∧ 𝜏))) |
22 | | df-nan 1483 |
. . . . . . . . . . . 12
⊢ ((𝜃 ⊼ 𝜒) ↔ ¬ (𝜃 ∧ 𝜒)) |
23 | | imnan 403 |
. . . . . . . . . . . 12
⊢ ((𝜃 → ¬ 𝜒) ↔ ¬ (𝜃 ∧ 𝜒)) |
24 | 22, 23 | bitr4i 281 |
. . . . . . . . . . 11
⊢ ((𝜃 ⊼ 𝜒) ↔ (𝜃 → ¬ 𝜒)) |
25 | | df-nan 1483 |
. . . . . . . . . . . 12
⊢ (((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)) ↔ ¬ ((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃))) |
26 | | anidm 568 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)) ↔ (𝜑 ⊼ 𝜃)) |
27 | | df-nan 1483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ⊼ 𝜃) ↔ ¬ (𝜑 ∧ 𝜃)) |
28 | | imnan 403 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 → ¬ 𝜃) ↔ ¬ (𝜑 ∧ 𝜃)) |
29 | | con2b 363 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 → ¬ 𝜃) ↔ (𝜃 → ¬ 𝜑)) |
30 | 28, 29 | bitr3i 280 |
. . . . . . . . . . . . 13
⊢ (¬
(𝜑 ∧ 𝜃) ↔ (𝜃 → ¬ 𝜑)) |
31 | 26, 27, 30 | 3bitri 300 |
. . . . . . . . . . . 12
⊢ (((𝜑 ⊼ 𝜃) ∧ (𝜑 ⊼ 𝜃)) ↔ (𝜃 → ¬ 𝜑)) |
32 | 25, 31 | xchbinx 337 |
. . . . . . . . . . 11
⊢ (((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)) ↔ ¬ (𝜃 → ¬ 𝜑)) |
33 | 24, 32 | anbi12i 629 |
. . . . . . . . . 10
⊢ (((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
34 | 33 | notbii 323 |
. . . . . . . . 9
⊢ (¬
((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ¬ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
35 | | df-nan 1483 |
. . . . . . . . 9
⊢ (((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ¬ ((𝜃 ⊼ 𝜒) ∧ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) |
36 | | iman 405 |
. . . . . . . . 9
⊢ (((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)) ↔ ¬ ((𝜃 → ¬ 𝜒) ∧ ¬ (𝜃 → ¬ 𝜑))) |
37 | 34, 35, 36 | 3bitr4i 306 |
. . . . . . . 8
⊢ (((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ↔ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))) |
38 | 21, 37 | anbi12i 629 |
. . . . . . 7
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ∧ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
39 | 15, 38 | xchbinx 337 |
. . . . . 6
⊢ (((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))) ↔ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) |
40 | 14, 39 | anbi12i 629 |
. . . . 5
⊢ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
41 | 40 | notbii 323 |
. . . 4
⊢ (¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ¬ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
42 | | iman 405 |
. . . 4
⊢ (((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑)))) ↔ ¬ ((𝜑 → (𝜒 ∧ 𝜓)) ∧ ¬ ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
43 | 41, 42 | bitr4i 281 |
. . 3
⊢ (¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ((𝜑 → (𝜒 ∧ 𝜓)) → ((𝜏 → (𝜏 ∧ 𝜏)) ∧ ((𝜃 → ¬ 𝜒) → (𝜃 → ¬ 𝜑))))) |
44 | 8, 43 | mpbir 234 |
. 2
⊢ ¬
((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |
45 | | df-nan 1483 |
. 2
⊢ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) ↔ ¬ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ∧ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃)))))) |
46 | 44, 45 | mpbir 234 |
1
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) |