MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nonconne Structured version   Visualization version   GIF version

Theorem nonconne 2955
Description: Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012.) (Proof shortened by Wolf Lammen, 21-Dec-2019.)
Assertion
Ref Expression
nonconne ¬ (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem nonconne
StepHypRef Expression
1 fal 1553 . 2 ¬ ⊥
2 eqneqall 2954 . . 3 (𝐴 = 𝐵 → (𝐴𝐵 → ⊥))
32imp 407 . 2 ((𝐴 = 𝐵𝐴𝐵) → ⊥)
41, 3mto 196 1 ¬ (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wfal 1551  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ne 2944
This theorem is referenced by:  frxp2  33791  osumcllem11N  37980  pexmidlem8N  37991  dochexmidlem8  39481
  Copyright terms: Public domain W3C validator