| Step | Hyp | Ref
| Expression |
| 1 | | nonconne 2945 |
. 2
⊢ ¬
(𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) |
| 2 | | simpl1 1192 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL) |
| 3 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ 𝐶) |
| 4 | | eqid 2736 |
. . . . . . . 8
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 5 | | osumcl.c |
. . . . . . . 8
⊢ 𝐶 = (PSubCl‘𝐾) |
| 6 | 4, 5 | psubclssatN 39965 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | 2, 3, 6 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 8 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ∈ 𝐶) |
| 9 | 4, 5 | psubclssatN 39965 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 10 | 2, 8, 9 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 11 | | osumcl.p |
. . . . . . 7
⊢ + =
(+𝑃‘𝐾) |
| 12 | 4, 11 | paddssat 39838 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 13 | 2, 7, 10, 12 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 14 | | osumcl.o |
. . . . . 6
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 15 | 4, 14 | 2polssN 39939 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |
| 16 | 2, 13, 15 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |
| 17 | | df-pss 3951 |
. . . . . . 7
⊢ ((𝑋 + 𝑌) ⊊ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))))) |
| 18 | | pssnel 4451 |
. . . . . . 7
⊢ ((𝑋 + 𝑌) ⊊ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌))) |
| 19 | 17, 18 | sylbir 235 |
. . . . . 6
⊢ (((𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌))) |
| 20 | | df-rex 3062 |
. . . . . 6
⊢
(∃𝑝 ∈ (
⊥
‘( ⊥ ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌))) |
| 21 | 19, 20 | sylibr 234 |
. . . . 5
⊢ (((𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌)) |
| 22 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(le‘𝐾) =
(le‘𝐾) |
| 23 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(join‘𝐾) =
(join‘𝐾) |
| 24 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑋 + {𝑝}) = (𝑋 + {𝑝}) |
| 25 | | eqid 2736 |
. . . . . . . . . . 11
⊢ ( ⊥
‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) |
| 26 | 22, 23, 4, 11, 14, 5, 24, 25 | osumcllem9N 39988 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋) |
| 27 | | simp11 1204 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL) |
| 28 | | simp12 1205 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ∈ 𝐶) |
| 29 | 27, 28, 6 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 30 | | simp13 1206 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ∈ 𝐶) |
| 31 | 27, 30, 9 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 32 | 13 | 3adantr3 1172 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 33 | 32 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 34 | 4, 14 | polssatN 39932 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) |
| 35 | 27, 33, 34 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) |
| 36 | 4, 14 | polssatN 39932 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾)) |
| 37 | 27, 35, 36 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾)) |
| 38 | | simp23 1209 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |
| 39 | 37, 38 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾)) |
| 40 | | simp3 1138 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌)) |
| 41 | 22, 23, 4, 11, 14, 5, 24, 25 | osumcllem10N 39989 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋) |
| 42 | 27, 29, 31, 39, 40, 41 | syl311anc 1386 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋) |
| 43 | 26, 42 | pm2.21ddne 3017 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
| 44 | 43 | 3exp 1119 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)))) |
| 45 | 44 | 3expd 1354 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ⊆ ( ⊥ ‘𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)))))) |
| 46 | 45 | imp32 418 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)))) |
| 47 | 46 | rexlimdv 3140 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 48 | 21, 47 | syl5 34 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 49 | 16, 48 | mpand 695 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 50 | 49 | necon1bd 2951 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))))) |
| 51 | 1, 50 | mpi 20 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |