Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   GIF version

Theorem osumcllem11N 37262
Description: Lemma for osumclN 37263. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumcllem11N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))

Proof of Theorem osumcllem11N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2999 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpl1 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simpl2 1189 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋𝐶)
4 eqid 2798 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 osumcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37237 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
72, 3, 6syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾))
8 simpl3 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌𝐶)
94, 5psubclssatN 37237 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
102, 8, 9syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾))
11 osumcl.p . . . . . . 7 + = (+𝑃𝐾)
124, 11paddssat 37110 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
132, 7, 10, 12syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
14 osumcl.o . . . . . 6 = (⊥𝑃𝐾)
154, 142polssN 37211 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
162, 13, 15syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
17 df-pss 3900 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))))
18 pssnel 4378 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
1917, 18sylbir 238 . . . . . 6 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
20 df-rex 3112 . . . . . 6 (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
2119, 20sylibr 237 . . . . 5 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌))
22 eqid 2798 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
23 eqid 2798 . . . . . . . . . . 11 (join‘𝐾) = (join‘𝐾)
24 eqid 2798 . . . . . . . . . . 11 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
25 eqid 2798 . . . . . . . . . . 11 ( ‘( ‘(𝑋 + 𝑌))) = ( ‘( ‘(𝑋 + 𝑌)))
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 37260 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋)
27 simp11 1200 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
28 simp12 1201 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
2927, 28, 6syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
30 simp13 1202 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
3127, 30, 9syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
32133adantr3 1168 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
33323adant3 1129 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
344, 14polssatN 37204 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
3527, 33, 34syl2anc 587 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
364, 14polssatN 37204 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
3727, 35, 36syl2anc 587 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
38 simp23 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))
3937, 38sseldd 3916 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
40 simp3 1135 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 37261 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4227, 29, 31, 39, 40, 41syl311anc 1381 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4326, 42pm2.21ddne 3071 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋𝑋𝑋))
44433exp 1116 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
45443expd 1350 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋 ⊆ ( 𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))))
4645imp32 422 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
4746rexlimdv 3242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋)))
4821, 47syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋𝑋𝑋)))
4916, 48mpand 694 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌))) → (𝑋 = 𝑋𝑋𝑋)))
5049necon1bd 3005 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌)))))
511, 50mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  wss 3881  wpss 3882  c0 4243  {csn 4525  cfv 6324  (class class class)co 7135  lecple 16564  joincjn 17546  Atomscatm 36559  HLchlt 36646  +𝑃cpadd 37091  𝑃cpolN 37198  PSubClcpscN 37230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-undef 7922  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-polarityN 37199  df-psubclN 37231
This theorem is referenced by:  osumclN  37263
  Copyright terms: Public domain W3C validator