Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   GIF version

Theorem osumcllem11N 37907
Description: Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumcllem11N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))

Proof of Theorem osumcllem11N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2954 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpl1 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simpl2 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋𝐶)
4 eqid 2738 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 osumcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37882 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
72, 3, 6syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾))
8 simpl3 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌𝐶)
94, 5psubclssatN 37882 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
102, 8, 9syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾))
11 osumcl.p . . . . . . 7 + = (+𝑃𝐾)
124, 11paddssat 37755 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
132, 7, 10, 12syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
14 osumcl.o . . . . . 6 = (⊥𝑃𝐾)
154, 142polssN 37856 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
162, 13, 15syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
17 df-pss 3902 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))))
18 pssnel 4401 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
1917, 18sylbir 234 . . . . . 6 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
20 df-rex 3069 . . . . . 6 (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
2119, 20sylibr 233 . . . . 5 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌))
22 eqid 2738 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
23 eqid 2738 . . . . . . . . . . 11 (join‘𝐾) = (join‘𝐾)
24 eqid 2738 . . . . . . . . . . 11 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
25 eqid 2738 . . . . . . . . . . 11 ( ‘( ‘(𝑋 + 𝑌))) = ( ‘( ‘(𝑋 + 𝑌)))
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 37905 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋)
27 simp11 1201 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
28 simp12 1202 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
2927, 28, 6syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
30 simp13 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
3127, 30, 9syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
32133adantr3 1169 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
33323adant3 1130 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
344, 14polssatN 37849 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
3527, 33, 34syl2anc 583 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
364, 14polssatN 37849 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
3727, 35, 36syl2anc 583 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
38 simp23 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))
3937, 38sseldd 3918 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
40 simp3 1136 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 37906 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4227, 29, 31, 39, 40, 41syl311anc 1382 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4326, 42pm2.21ddne 3028 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋𝑋𝑋))
44433exp 1117 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
45443expd 1351 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋 ⊆ ( 𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))))
4645imp32 418 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
4746rexlimdv 3211 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋)))
4821, 47syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋𝑋𝑋)))
4916, 48mpand 691 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌))) → (𝑋 = 𝑋𝑋𝑋)))
5049necon1bd 2960 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌)))))
511, 50mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  wss 3883  wpss 3884  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204  HLchlt 37291  +𝑃cpadd 37736  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844  df-psubclN 37876
This theorem is referenced by:  osumclN  37908
  Copyright terms: Public domain W3C validator