Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem11N Structured version   Visualization version   GIF version

Theorem osumcllem11N 37980
Description: Lemma for osumclN 37981. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumcllem11N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))

Proof of Theorem osumcllem11N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2955 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpl1 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simpl2 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋𝐶)
4 eqid 2738 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 osumcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37955 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
72, 3, 6syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ (Atoms‘𝐾))
8 simpl3 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌𝐶)
94, 5psubclssatN 37955 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
102, 8, 9syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → 𝑌 ⊆ (Atoms‘𝐾))
11 osumcl.p . . . . . . 7 + = (+𝑃𝐾)
124, 11paddssat 37828 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
132, 7, 10, 12syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
14 osumcl.o . . . . . 6 = (⊥𝑃𝐾)
154, 142polssN 37929 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
162, 13, 15syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))))
17 df-pss 3906 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) ↔ ((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))))
18 pssnel 4404 . . . . . . 7 ((𝑋 + 𝑌) ⊊ ( ‘( ‘(𝑋 + 𝑌))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
1917, 18sylbir 234 . . . . . 6 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
20 df-rex 3070 . . . . . 6 (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) ↔ ∃𝑝(𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)))
2119, 20sylibr 233 . . . . 5 (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → ∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌))
22 eqid 2738 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
23 eqid 2738 . . . . . . . . . . 11 (join‘𝐾) = (join‘𝐾)
24 eqid 2738 . . . . . . . . . . 11 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
25 eqid 2738 . . . . . . . . . . 11 ( ‘( ‘(𝑋 + 𝑌))) = ( ‘( ‘(𝑋 + 𝑌)))
2622, 23, 4, 11, 14, 5, 24, 25osumcllem9N 37978 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) = 𝑋)
27 simp11 1202 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
28 simp12 1203 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
2927, 28, 6syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
30 simp13 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
3127, 30, 9syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
32133adantr3 1170 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
33323adant3 1131 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
344, 14polssatN 37922 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
3527, 33, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾))
364, 14polssatN 37922 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ (Atoms‘𝐾)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
3727, 35, 36syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ (Atoms‘𝐾))
38 simp23 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))))
3937, 38sseldd 3922 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝 ∈ (Atoms‘𝐾))
40 simp3 1137 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
4122, 23, 4, 11, 14, 5, 24, 25osumcllem10N 37979 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4227, 29, 31, 39, 40, 41syl311anc 1383 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ≠ 𝑋)
4326, 42pm2.21ddne 3029 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 = 𝑋𝑋𝑋))
44433exp 1118 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌)))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
45443expd 1352 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋 ⊆ ( 𝑌) → (𝑋 ≠ ∅ → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))))
4645imp32 419 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) → (¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋))))
4746rexlimdv 3212 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ ( ‘( ‘(𝑋 + 𝑌))) ¬ 𝑝 ∈ (𝑋 + 𝑌) → (𝑋 = 𝑋𝑋𝑋)))
4821, 47syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (((𝑋 + 𝑌) ⊆ ( ‘( ‘(𝑋 + 𝑌))) ∧ (𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌)))) → (𝑋 = 𝑋𝑋𝑋)))
4916, 48mpand 692 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → ((𝑋 + 𝑌) ≠ ( ‘( ‘(𝑋 + 𝑌))) → (𝑋 = 𝑋𝑋𝑋)))
5049necon1bd 2961 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌)))))
511, 50mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  wss 3887  wpss 3888  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916  PSubClcpscN 37948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917  df-psubclN 37949
This theorem is referenced by:  osumclN  37981
  Copyright terms: Public domain W3C validator